Updated multiprecision module to support the most recent version of MPFR C++

This commit is contained in:
Pavel Holoborodko 2012-10-19 18:12:31 +09:00
parent 77f92bf0b1
commit 8b84e05739
6 changed files with 1910 additions and 8256 deletions

View File

@ -1,21 +1,17 @@
// This file is part of a joint effort between Eigen, a lightweight C++ template library
// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
//
// Copyright (C) 2010 Pavel Holoborodko <pavel@holoborodko.com>
// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// Contributors:
// Brian Gladman, Helmut Jarausch, Fokko Beekhof, Ulrich Mutze, Heinz van Saanen, Pere Constans
#ifndef EIGEN_MPREALSUPPORT_MODULE_H
#define EIGEN_MPREALSUPPORT_MODULE_H
#include <ctime>
#include <mpreal.h>
#include <Eigen/Core>
@ -61,7 +57,7 @@ int main()
\endcode
*
*/
template<> struct NumTraits<mpfr::mpreal>
: GenericNumTraits<mpfr::mpreal>
{
@ -77,72 +73,66 @@ int main()
typedef mpfr::mpreal Real;
typedef mpfr::mpreal NonInteger;
inline static Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
inline static Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
inline static mpfr::mpreal highest() { return mpfr::mpreal_max(mpfr::mpreal::get_default_prec()); }
inline static mpfr::mpreal lowest() { return -mpfr::mpreal_max(mpfr::mpreal::get_default_prec()); }
// Constants
inline static Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
inline static Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
inline static Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
inline static Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
inline static Real epsilon()
{
return mpfr::machine_epsilon(mpfr::mpreal::get_default_prec());
}
inline static Real dummy_precision()
{
unsigned int weak_prec = ((mpfr::mpreal::get_default_prec()-1)*90)/100;
return mpfr::machine_epsilon(weak_prec);
inline static Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
inline static Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
inline static Real dummy_precision()
{
unsigned int weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
return mpfr::machine_epsilon(weak_prec);
}
};
namespace internal {
namespace internal {
template<> mpfr::mpreal random<mpfr::mpreal>()
template<> inline mpfr::mpreal random<mpfr::mpreal>()
{
#if (MPFR_VERSION >= MPFR_VERSION_NUM(3,0,0))
static gmp_randstate_t state;
static bool isFirstTime = true;
if(isFirstTime)
{
gmp_randinit_default(state);
gmp_randseed_ui(state,(unsigned)time(NULL));
isFirstTime = false;
}
return mpfr::urandom(state)*2-1;
#else
return mpfr::mpreal(random<double>());
#endif
return mpfr::random();
}
template<> mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
{
return a + (b-a) * random<mpfr::mpreal>();
}
bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& prec)
inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::abs(a) <= mpfr::abs(b) * prec;
return mpfr::abs(a) <= mpfr::abs(b) * eps;
}
inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& prec)
inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::abs(a - b) <= (mpfr::min)(mpfr::abs(a), mpfr::abs(b)) * prec;
return mpfr::isEqualFuzzy(a,b,eps);
}
inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& prec)
inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return a <= b || isApprox(a, b, prec);
return a <= b || mpfr::isEqualFuzzy(a,b,eps);
}
template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
{ return x.toLDouble(); }
template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
{ return x.toDouble(); }
template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
{ return x.toLong(); }
template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
{ return int(x.toLong()); }
} // end namespace internal
} // end namespace internal
}
#endif // EIGEN_MPREALSUPPORT_MODULE_H

File diff suppressed because it is too large Load Diff

View File

@ -1,562 +0,0 @@
/*
Default header file for malloc-2.8.x, written by Doug Lea
and released to the public domain, as explained at
http://creativecommons.org/licenses/publicdomain.
last update: Wed May 27 14:25:17 2009 Doug Lea (dl at gee)
This header is for ANSI C/C++ only. You can set any of
the following #defines before including:
* If USE_DL_PREFIX is defined, it is assumed that malloc.c
was also compiled with this option, so all routines
have names starting with "dl".
* If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this
file will be #included AFTER <malloc.h>. This is needed only if
your system defines a struct mallinfo that is incompatible with the
standard one declared here. Otherwise, you can include this file
INSTEAD of your system system <malloc.h>. At least on ANSI, all
declarations should be compatible with system versions
* If MSPACES is defined, declarations for mspace versions are included.
*/
#ifndef MALLOC_280_H
#define MALLOC_280_H
#define USE_DL_PREFIX
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h> /* for size_t */
#ifndef ONLY_MSPACES
#define ONLY_MSPACES 0 /* define to a value */
#endif /* ONLY_MSPACES */
#ifndef NO_MALLINFO
#define NO_MALLINFO 0
#endif /* NO_MALLINFO */
#if !ONLY_MSPACES
#ifndef USE_DL_PREFIX
#define dlcalloc calloc
#define dlfree free
#define dlmalloc malloc
#define dlmemalign memalign
#define dlrealloc realloc
#define dlvalloc valloc
#define dlpvalloc pvalloc
#define dlmallinfo mallinfo
#define dlmallopt mallopt
#define dlmalloc_trim malloc_trim
#define dlmalloc_stats malloc_stats
#define dlmalloc_usable_size malloc_usable_size
#define dlmalloc_footprint malloc_footprint
#define dlindependent_calloc independent_calloc
#define dlindependent_comalloc independent_comalloc
#endif /* USE_DL_PREFIX */
#if !NO_MALLINFO
#ifndef HAVE_USR_INCLUDE_MALLOC_H
#ifndef _MALLOC_H
#ifndef MALLINFO_FIELD_TYPE
#define MALLINFO_FIELD_TYPE size_t
#endif /* MALLINFO_FIELD_TYPE */
#ifndef STRUCT_MALLINFO_DECLARED
#define STRUCT_MALLINFO_DECLARED 1
struct mallinfo {
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
MALLINFO_FIELD_TYPE smblks; /* always 0 */
MALLINFO_FIELD_TYPE hblks; /* always 0 */
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
MALLINFO_FIELD_TYPE fordblks; /* total free space */
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
};
#endif /* STRUCT_MALLINFO_DECLARED */
#endif /* _MALLOC_H */
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
#endif /* !NO_MALLINFO */
/*
malloc(size_t n)
Returns a pointer to a newly allocated chunk of at least n bytes, or
null if no space is available, in which case errno is set to ENOMEM
on ANSI C systems.
If n is zero, malloc returns a minimum-sized chunk. (The minimum
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
systems.) Note that size_t is an unsigned type, so calls with
arguments that would be negative if signed are interpreted as
requests for huge amounts of space, which will often fail. The
maximum supported value of n differs across systems, but is in all
cases less than the maximum representable value of a size_t.
*/
void* dlmalloc(size_t);
/*
free(void* p)
Releases the chunk of memory pointed to by p, that had been previously
allocated using malloc or a related routine such as realloc.
It has no effect if p is null. If p was not malloced or already
freed, free(p) will by default cuase the current program to abort.
*/
void dlfree(void*);
/*
calloc(size_t n_elements, size_t element_size);
Returns a pointer to n_elements * element_size bytes, with all locations
set to zero.
*/
void* dlcalloc(size_t, size_t);
/*
realloc(void* p, size_t n)
Returns a pointer to a chunk of size n that contains the same data
as does chunk p up to the minimum of (n, p's size) bytes, or null
if no space is available.
The returned pointer may or may not be the same as p. The algorithm
prefers extending p in most cases when possible, otherwise it
employs the equivalent of a malloc-copy-free sequence.
If p is null, realloc is equivalent to malloc.
If space is not available, realloc returns null, errno is set (if on
ANSI) and p is NOT freed.
if n is for fewer bytes than already held by p, the newly unused
space is lopped off and freed if possible. realloc with a size
argument of zero (re)allocates a minimum-sized chunk.
The old unix realloc convention of allowing the last-free'd chunk
to be used as an argument to realloc is not supported.
*/
void* dlrealloc(void*, size_t);
/*
memalign(size_t alignment, size_t n);
Returns a pointer to a newly allocated chunk of n bytes, aligned
in accord with the alignment argument.
The alignment argument should be a power of two. If the argument is
not a power of two, the nearest greater power is used.
8-byte alignment is guaranteed by normal malloc calls, so don't
bother calling memalign with an argument of 8 or less.
Overreliance on memalign is a sure way to fragment space.
*/
void* dlmemalign(size_t, size_t);
/*
valloc(size_t n);
Equivalent to memalign(pagesize, n), where pagesize is the page
size of the system. If the pagesize is unknown, 4096 is used.
*/
void* dlvalloc(size_t);
/*
mallopt(int parameter_number, int parameter_value)
Sets tunable parameters The format is to provide a
(parameter-number, parameter-value) pair. mallopt then sets the
corresponding parameter to the argument value if it can (i.e., so
long as the value is meaningful), and returns 1 if successful else
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
normally defined in malloc.h. None of these are use in this malloc,
so setting them has no effect. But this malloc also supports other
options in mallopt:
Symbol param # default allowed param values
M_TRIM_THRESHOLD -1 2*1024*1024 any (-1U disables trimming)
M_GRANULARITY -2 page size any power of 2 >= page size
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
*/
int dlmallopt(int, int);
#define M_TRIM_THRESHOLD (-1)
#define M_GRANULARITY (-2)
#define M_MMAP_THRESHOLD (-3)
/*
malloc_footprint();
Returns the number of bytes obtained from the system. The total
number of bytes allocated by malloc, realloc etc., is less than this
value. Unlike mallinfo, this function returns only a precomputed
result, so can be called frequently to monitor memory consumption.
Even if locks are otherwise defined, this function does not use them,
so results might not be up to date.
*/
size_t dlmalloc_footprint();
#if !NO_MALLINFO
/*
mallinfo()
Returns (by copy) a struct containing various summary statistics:
arena: current total non-mmapped bytes allocated from system
ordblks: the number of free chunks
smblks: always zero.
hblks: current number of mmapped regions
hblkhd: total bytes held in mmapped regions
usmblks: the maximum total allocated space. This will be greater
than current total if trimming has occurred.
fsmblks: always zero
uordblks: current total allocated space (normal or mmapped)
fordblks: total free space
keepcost: the maximum number of bytes that could ideally be released
back to system via malloc_trim. ("ideally" means that
it ignores page restrictions etc.)
Because these fields are ints, but internal bookkeeping may
be kept as longs, the reported values may wrap around zero and
thus be inaccurate.
*/
struct mallinfo dlmallinfo(void);
#endif /* NO_MALLINFO */
/*
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
independent_calloc is similar to calloc, but instead of returning a
single cleared space, it returns an array of pointers to n_elements
independent elements that can hold contents of size elem_size, each
of which starts out cleared, and can be independently freed,
realloc'ed etc. The elements are guaranteed to be adjacently
allocated (this is not guaranteed to occur with multiple callocs or
mallocs), which may also improve cache locality in some
applications.
The "chunks" argument is optional (i.e., may be null, which is
probably the most typical usage). If it is null, the returned array
is itself dynamically allocated and should also be freed when it is
no longer needed. Otherwise, the chunks array must be of at least
n_elements in length. It is filled in with the pointers to the
chunks.
In either case, independent_calloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and "chunks"
is null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use regular calloc and assign pointers into this
space to represent elements. (In this case though, you cannot
independently free elements.)
independent_calloc simplifies and speeds up implementations of many
kinds of pools. It may also be useful when constructing large data
structures that initially have a fixed number of fixed-sized nodes,
but the number is not known at compile time, and some of the nodes
may later need to be freed. For example:
struct Node { int item; struct Node* next; };
struct Node* build_list() {
struct Node** pool;
int n = read_number_of_nodes_needed();
if (n <= 0) return 0;
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
if (pool == 0) die();
// organize into a linked list...
struct Node* first = pool[0];
for (i = 0; i < n-1; ++i)
pool[i]->next = pool[i+1];
free(pool); // Can now free the array (or not, if it is needed later)
return first;
}
*/
void** dlindependent_calloc(size_t, size_t, void**);
/*
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
independent_comalloc allocates, all at once, a set of n_elements
chunks with sizes indicated in the "sizes" array. It returns
an array of pointers to these elements, each of which can be
independently freed, realloc'ed etc. The elements are guaranteed to
be adjacently allocated (this is not guaranteed to occur with
multiple callocs or mallocs), which may also improve cache locality
in some applications.
The "chunks" argument is optional (i.e., may be null). If it is null
the returned array is itself dynamically allocated and should also
be freed when it is no longer needed. Otherwise, the chunks array
must be of at least n_elements in length. It is filled in with the
pointers to the chunks.
In either case, independent_comalloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and chunks is
null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use a single regular malloc, and assign pointers at
particular offsets in the aggregate space. (In this case though, you
cannot independently free elements.)
independent_comallac differs from independent_calloc in that each
element may have a different size, and also that it does not
automatically clear elements.
independent_comalloc can be used to speed up allocation in cases
where several structs or objects must always be allocated at the
same time. For example:
struct Head { ... }
struct Foot { ... }
void send_message(char* msg) {
int msglen = strlen(msg);
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
void* chunks[3];
if (independent_comalloc(3, sizes, chunks) == 0)
die();
struct Head* head = (struct Head*)(chunks[0]);
char* body = (char*)(chunks[1]);
struct Foot* foot = (struct Foot*)(chunks[2]);
// ...
}
In general though, independent_comalloc is worth using only for
larger values of n_elements. For small values, you probably won't
detect enough difference from series of malloc calls to bother.
Overuse of independent_comalloc can increase overall memory usage,
since it cannot reuse existing noncontiguous small chunks that
might be available for some of the elements.
*/
void** dlindependent_comalloc(size_t, size_t*, void**);
/*
pvalloc(size_t n);
Equivalent to valloc(minimum-page-that-holds(n)), that is,
round up n to nearest pagesize.
*/
void* dlpvalloc(size_t);
/*
malloc_trim(size_t pad);
If possible, gives memory back to the system (via negative arguments
to sbrk) if there is unused memory at the `high' end of the malloc
pool or in unused MMAP segments. You can call this after freeing
large blocks of memory to potentially reduce the system-level memory
requirements of a program. However, it cannot guarantee to reduce
memory. Under some allocation patterns, some large free blocks of
memory will be locked between two used chunks, so they cannot be
given back to the system.
The `pad' argument to malloc_trim represents the amount of free
trailing space to leave untrimmed. If this argument is zero, only
the minimum amount of memory to maintain internal data structures
will be left. Non-zero arguments can be supplied to maintain enough
trailing space to service future expected allocations without having
to re-obtain memory from the system.
Malloc_trim returns 1 if it actually released any memory, else 0.
*/
int dlmalloc_trim(size_t);
/*
malloc_stats();
Prints on stderr the amount of space obtained from the system (both
via sbrk and mmap), the maximum amount (which may be more than
current if malloc_trim and/or munmap got called), and the current
number of bytes allocated via malloc (or realloc, etc) but not yet
freed. Note that this is the number of bytes allocated, not the
number requested. It will be larger than the number requested
because of alignment and bookkeeping overhead. Because it includes
alignment wastage as being in use, this figure may be greater than
zero even when no user-level chunks are allocated.
The reported current and maximum system memory can be inaccurate if
a program makes other calls to system memory allocation functions
(normally sbrk) outside of malloc.
malloc_stats prints only the most commonly interesting statistics.
More information can be obtained by calling mallinfo.
*/
void dlmalloc_stats();
#endif /* !ONLY_MSPACES */
/*
malloc_usable_size(void* p);
Returns the number of bytes you can actually use in
an allocated chunk, which may be more than you requested (although
often not) due to alignment and minimum size constraints.
You can use this many bytes without worrying about
overwriting other allocated objects. This is not a particularly great
programming practice. malloc_usable_size can be more useful in
debugging and assertions, for example:
p = malloc(n);
assert(malloc_usable_size(p) >= 256);
*/
size_t dlmalloc_usable_size(void*);
#if MSPACES
/*
mspace is an opaque type representing an independent
region of space that supports mspace_malloc, etc.
*/
typedef void* mspace;
/*
create_mspace creates and returns a new independent space with the
given initial capacity, or, if 0, the default granularity size. It
returns null if there is no system memory available to create the
space. If argument locked is non-zero, the space uses a separate
lock to control access. The capacity of the space will grow
dynamically as needed to service mspace_malloc requests. You can
control the sizes of incremental increases of this space by
compiling with a different DEFAULT_GRANULARITY or dynamically
setting with mallopt(M_GRANULARITY, value).
*/
mspace create_mspace(size_t capacity, int locked);
/*
destroy_mspace destroys the given space, and attempts to return all
of its memory back to the system, returning the total number of
bytes freed. After destruction, the results of access to all memory
used by the space become undefined.
*/
size_t destroy_mspace(mspace msp);
/*
create_mspace_with_base uses the memory supplied as the initial base
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
space is used for bookkeeping, so the capacity must be at least this
large. (Otherwise 0 is returned.) When this initial space is
exhausted, additional memory will be obtained from the system.
Destroying this space will deallocate all additionally allocated
space (if possible) but not the initial base.
*/
mspace create_mspace_with_base(void* base, size_t capacity, int locked);
/*
mspace_track_large_chunks controls whether requests for large chunks
are allocated in their own untracked mmapped regions, separate from
others in this mspace. By default large chunks are not tracked,
which reduces fragmentation. However, such chunks are not
necessarily released to the system upon destroy_mspace. Enabling
tracking by setting to true may increase fragmentation, but avoids
leakage when relying on destroy_mspace to release all memory
allocated using this space. The function returns the previous
setting.
*/
int mspace_track_large_chunks(mspace msp, int enable);
/*
mspace_malloc behaves as malloc, but operates within
the given space.
*/
void* mspace_malloc(mspace msp, size_t bytes);
/*
mspace_free behaves as free, but operates within
the given space.
If compiled with FOOTERS==1, mspace_free is not actually needed.
free may be called instead of mspace_free because freed chunks from
any space are handled by their originating spaces.
*/
void mspace_free(mspace msp, void* mem);
/*
mspace_realloc behaves as realloc, but operates within
the given space.
If compiled with FOOTERS==1, mspace_realloc is not actually
needed. realloc may be called instead of mspace_realloc because
realloced chunks from any space are handled by their originating
spaces.
*/
void* mspace_realloc(mspace msp, void* mem, size_t newsize);
/*
mspace_calloc behaves as calloc, but operates within
the given space.
*/
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
/*
mspace_memalign behaves as memalign, but operates within
the given space.
*/
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
/*
mspace_independent_calloc behaves as independent_calloc, but
operates within the given space.
*/
void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]);
/*
mspace_independent_comalloc behaves as independent_comalloc, but
operates within the given space.
*/
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]);
/*
mspace_footprint() returns the number of bytes obtained from the
system for this space.
*/
size_t mspace_footprint(mspace msp);
#if !NO_MALLINFO
/*
mspace_mallinfo behaves as mallinfo, but reports properties of
the given space.
*/
struct mallinfo mspace_mallinfo(mspace msp);
#endif /* NO_MALLINFO */
/*
malloc_usable_size(void* p) behaves the same as malloc_usable_size;
*/
size_t mspace_usable_size(void* mem);
/*
mspace_malloc_stats behaves as malloc_stats, but reports
properties of the given space.
*/
void mspace_malloc_stats(mspace msp);
/*
mspace_trim behaves as malloc_trim, but
operates within the given space.
*/
int mspace_trim(mspace msp, size_t pad);
/*
An alias for mallopt.
*/
int mspace_mallopt(int, int);
#endif /* MSPACES */
#ifdef __cplusplus
}; /* end of extern "C" */
#endif
#endif /* MALLOC_280_H */

View File

@ -1,597 +0,0 @@
/*
Multi-precision real number class. C++ interface fo MPFR library.
Project homepage: http://www.holoborodko.com/pavel/
Contact e-mail: pavel@holoborodko.com
Copyright (c) 2008-2011 Pavel Holoborodko
Core Developers:
Pavel Holoborodko, Dmitriy Gubanov, Konstantin Holoborodko.
Contributors:
Brian Gladman, Helmut Jarausch, Fokko Beekhof, Ulrich Mutze,
Heinz van Saanen, Pere Constans, Peter van Hoof, Gael Guennebaud,
Tsai Chia Cheng, Alexei Zubanov.
****************************************************************************
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
****************************************************************************
****************************************************************************
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
*/
#include <cstring>
#include "mpreal.h"
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
#include "dlmalloc.h"
#endif
using std::ws;
using std::cerr;
using std::endl;
using std::string;
using std::ostream;
using std::istream;
namespace mpfr{
mp_rnd_t mpreal::default_rnd = MPFR_RNDN; //(mpfr_get_default_rounding_mode)();
mp_prec_t mpreal::default_prec = 64; //(mpfr_get_default_prec)();
int mpreal::default_base = 10;
int mpreal::double_bits = -1;
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
bool mpreal::is_custom_malloc = false;
#endif
// Default constructor: creates mp number and initializes it to 0.
mpreal::mpreal()
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,default_prec);
mpfr_set_ui(mp,0,default_rnd);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const mpreal& u)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,mpfr_get_prec(u.mp));
mpfr_set(mp,u.mp,default_rnd);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const mpfr_t u)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,mpfr_get_prec(u));
mpfr_set(mp,u,default_rnd);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const mpf_t u)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,(mp_prec_t) mpf_get_prec(u)); // (gmp: mp_bitcnt_t) unsigned long -> long (mpfr: mp_prec_t)
mpfr_set_f(mp,u,default_rnd);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const mpz_t u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_z(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const mpq_t u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_q(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const double u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
if(double_bits == -1 || fits_in_bits(u, double_bits))
{
mpfr_init2(mp,prec);
mpfr_set_d(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
else
throw conversion_overflow();
}
mpreal::mpreal(const long double u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_ld(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const unsigned long int u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_ui(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const unsigned int u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_ui(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const long int u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_si(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const int u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_si(mp,u,mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
#if defined (MPREAL_HAVE_INT64_SUPPORT)
mpreal::mpreal(const uint64_t u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_uj(mp, u, mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const int64_t u, mp_prec_t prec, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_sj(mp, u, mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
#endif
mpreal::mpreal(const char* s, mp_prec_t prec, int base, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_str(mp, s, base, mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::mpreal(const std::string& s, mp_prec_t prec, int base, mp_rnd_t mode)
{
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
mpfr_init2(mp,prec);
mpfr_set_str(mp, s.c_str(), base, mode);
MPREAL_MSVC_DEBUGVIEW_CODE;
}
mpreal::~mpreal()
{
mpfr_clear(mp);
}
// Operators - Assignment
mpreal& mpreal::operator=(const char* s)
{
mpfr_t t;
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
if(0==mpfr_init_set_str(t,s,default_base,default_rnd))
{
// We will rewrite mp anyway, so flash it and resize
mpfr_set_prec(mp,mpfr_get_prec(t));
mpfr_set(mp,t,mpreal::default_rnd);
mpfr_clear(t);
MPREAL_MSVC_DEBUGVIEW_CODE;
}else{
mpfr_clear(t);
}
return *this;
}
const mpreal fma (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode)
{
mpreal a;
mp_prec_t p1, p2, p3;
p1 = v1.get_prec();
p2 = v2.get_prec();
p3 = v3.get_prec();
a.set_prec(p3>p2?(p3>p1?p3:p1):(p2>p1?p2:p1));
mpfr_fma(a.mp,v1.mp,v2.mp,v3.mp,rnd_mode);
return a;
}
const mpreal fms (const mpreal& v1, const mpreal& v2, const mpreal& v3, mp_rnd_t rnd_mode)
{
mpreal a;
mp_prec_t p1, p2, p3;
p1 = v1.get_prec();
p2 = v2.get_prec();
p3 = v3.get_prec();
a.set_prec(p3>p2?(p3>p1?p3:p1):(p2>p1?p2:p1));
mpfr_fms(a.mp,v1.mp,v2.mp,v3.mp,rnd_mode);
return a;
}
const mpreal agm (const mpreal& v1, const mpreal& v2, mp_rnd_t rnd_mode)
{
mpreal a;
mp_prec_t p1, p2;
p1 = v1.get_prec();
p2 = v2.get_prec();
a.set_prec(p1>p2?p1:p2);
mpfr_agm(a.mp, v1.mp, v2.mp, rnd_mode);
return a;
}
const mpreal sum (const mpreal tab[], unsigned long int n, mp_rnd_t rnd_mode)
{
mpreal x;
mpfr_ptr* t;
unsigned long int i;
t = new mpfr_ptr[n];
for (i=0;i<n;i++) t[i] = (mpfr_ptr)tab[i].mp;
mpfr_sum(x.mp,t,n,rnd_mode);
delete[] t;
return x;
}
const mpreal remquo (long* q, const mpreal& x, const mpreal& y, mp_rnd_t rnd_mode)
{
mpreal a;
mp_prec_t yp, xp;
yp = y.get_prec();
xp = x.get_prec();
a.set_prec(yp>xp?yp:xp);
mpfr_remquo(a.mp,q, x.mp, y.mp, rnd_mode);
return a;
}
template <class T>
std::string toString(T t, std::ios_base & (*f)(std::ios_base&))
{
std::ostringstream oss;
oss << f << t;
return oss.str();
}
#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0))
std::string mpreal::toString(const std::string& format) const
{
char *s = NULL;
string out;
if( !format.empty() )
{
if(!(mpfr_asprintf(&s,format.c_str(),mp) < 0))
{
out = std::string(s);
mpfr_free_str(s);
}
}
return out;
}
#endif
std::string mpreal::toString(int n, int b, mp_rnd_t mode) const
{
(void)b;
(void)mode;
#if (MPFR_VERSION >= MPFR_VERSION_NUM(2,4,0))
// Use MPFR native function for output
char format[128];
int digits;
digits = n > 0 ? n : bits2digits(mpfr_get_prec(mp));
sprintf(format,"%%.%dRNg",digits); // Default format
return toString(std::string(format));
#else
char *s, *ns = NULL;
size_t slen, nslen;
mp_exp_t exp;
string out;
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
set_custom_malloc();
#endif
if(mpfr_inf_p(mp))
{
if(mpfr_sgn(mp)>0) return "+Inf";
else return "-Inf";
}
if(mpfr_zero_p(mp)) return "0";
if(mpfr_nan_p(mp)) return "NaN";
s = mpfr_get_str(NULL,&exp,b,0,mp,mode);
ns = mpfr_get_str(NULL,&exp,b,n,mp,mode);
if(s!=NULL && ns!=NULL)
{
slen = strlen(s);
nslen = strlen(ns);
if(nslen<=slen)
{
mpfr_free_str(s);
s = ns;
slen = nslen;
}
else {
mpfr_free_str(ns);
}
// Make human eye-friendly formatting if possible
if (exp>0 && static_cast<size_t>(exp)<slen)
{
if(s[0]=='-')
{
// Remove zeros starting from right end
char* ptr = s+slen-1;
while (*ptr=='0' && ptr>s+exp) ptr--;
if(ptr==s+exp) out = string(s,exp+1);
else out = string(s,exp+1)+'.'+string(s+exp+1,ptr-(s+exp+1)+1);
//out = string(s,exp+1)+'.'+string(s+exp+1);
}
else
{
// Remove zeros starting from right end
char* ptr = s+slen-1;
while (*ptr=='0' && ptr>s+exp-1) ptr--;
if(ptr==s+exp-1) out = string(s,exp);
else out = string(s,exp)+'.'+string(s+exp,ptr-(s+exp)+1);
//out = string(s,exp)+'.'+string(s+exp);
}
}else{ // exp<0 || exp>slen
if(s[0]=='-')
{
// Remove zeros starting from right end
char* ptr = s+slen-1;
while (*ptr=='0' && ptr>s+1) ptr--;
if(ptr==s+1) out = string(s,2);
else out = string(s,2)+'.'+string(s+2,ptr-(s+2)+1);
//out = string(s,2)+'.'+string(s+2);
}
else
{
// Remove zeros starting from right end
char* ptr = s+slen-1;
while (*ptr=='0' && ptr>s) ptr--;
if(ptr==s) out = string(s,1);
else out = string(s,1)+'.'+string(s+1,ptr-(s+1)+1);
//out = string(s,1)+'.'+string(s+1);
}
// Make final string
if(--exp)
{
if(exp>0) out += "e+"+mpfr::toString<mp_exp_t>(exp,std::dec);
else out += "e"+mpfr::toString<mp_exp_t>(exp,std::dec);
}
}
mpfr_free_str(s);
return out;
}else{
return "conversion error!";
}
#endif
}
//////////////////////////////////////////////////////////////////////////
// I/O
ostream& operator<<(ostream& os, const mpreal& v)
{
return os<<v.toString(static_cast<int>(os.precision()));
}
istream& operator>>(istream &is, mpreal& v)
{
string tmp;
is >> tmp;
mpfr_set_str(v.mp, tmp.c_str(),mpreal::default_base,mpreal::default_rnd);
return is;
}
#if defined (MPREAL_HAVE_CUSTOM_MPFR_MALLOC)
// Optimized dynamic memory allocation/(re-)deallocation.
void * mpreal::mpreal_allocate(size_t alloc_size)
{
return(dlmalloc(alloc_size));
}
void * mpreal::mpreal_reallocate(void *ptr, size_t old_size, size_t new_size)
{
return(dlrealloc(ptr,new_size));
}
void mpreal::mpreal_free(void *ptr, size_t size)
{
dlfree(ptr);
}
inline void mpreal::set_custom_malloc(void)
{
if(!is_custom_malloc)
{
mp_set_memory_functions(mpreal_allocate,mpreal_reallocate,mpreal_free);
is_custom_malloc = true;
}
}
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -57,8 +57,3 @@ void test_mpreal_support()
stream << A;
}
}
extern "C" {
#include "mpreal/dlmalloc.c"
}
#include "mpreal/mpreal.cpp"