mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
bug #1193: fix lpNorm<Infinity> for empty input.
This commit is contained in:
parent
d616a81294
commit
8b6f53222b
@ -227,9 +227,12 @@ struct lpNorm_selector<Derived, 2>
|
||||
template<typename Derived>
|
||||
struct lpNorm_selector<Derived, Infinity>
|
||||
{
|
||||
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
|
||||
static inline RealScalar run(const MatrixBase<Derived>& m)
|
||||
{
|
||||
if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0))
|
||||
return RealScalar(0);
|
||||
return m.cwiseAbs().maxCoeff();
|
||||
}
|
||||
};
|
||||
@ -240,6 +243,8 @@ struct lpNorm_selector<Derived, Infinity>
|
||||
* of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
|
||||
* norm, that is the maximum of the absolute values of the coefficients of \c *this.
|
||||
*
|
||||
* In all cases, if \c *this is empty, then the value 0 is returned.
|
||||
*
|
||||
* \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink.
|
||||
*
|
||||
* \sa norm()
|
||||
|
@ -438,7 +438,9 @@ DenseBase<Derived>::maxCoeff() const
|
||||
return derived().redux(Eigen::internal::scalar_max_op<Scalar>());
|
||||
}
|
||||
|
||||
/** \returns the sum of all coefficients of *this
|
||||
/** \returns the sum of all coefficients of \c *this
|
||||
*
|
||||
* If \c *this is empty, then the value 0 is returned.
|
||||
*
|
||||
* \sa trace(), prod(), mean()
|
||||
*/
|
||||
|
@ -144,9 +144,21 @@ template<typename MatrixType> void comparisons(const MatrixType& m)
|
||||
template<typename VectorType> void lpNorm(const VectorType& v)
|
||||
{
|
||||
using std::sqrt;
|
||||
typedef typename VectorType::RealScalar RealScalar;
|
||||
VectorType u = VectorType::Random(v.size());
|
||||
|
||||
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
|
||||
if(v.size()==0)
|
||||
{
|
||||
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0));
|
||||
VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0));
|
||||
VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0));
|
||||
VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0));
|
||||
}
|
||||
else
|
||||
{
|
||||
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
|
||||
}
|
||||
|
||||
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
|
||||
VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
|
||||
VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
|
||||
@ -255,6 +267,8 @@ void test_array_for_matrix()
|
||||
CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
}
|
||||
CALL_SUBTEST_5( lpNorm(VectorXf(0)) );
|
||||
CALL_SUBTEST_4( lpNorm(VectorXcf(0)) );
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
|
Loading…
Reference in New Issue
Block a user