mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
added non-optimized real forward fft (no inverse yet)
This commit is contained in:
parent
68cad98bc9
commit
8b4afe3deb
@ -57,21 +57,36 @@ class FFT
|
||||
|
||||
FFT(const traits_type & traits=traits_type() ) :m_traits(traits) { }
|
||||
|
||||
void fwd( Complex * dst, const Complex * src, int nfft)
|
||||
template <typename _Input>
|
||||
void fwd( Complex * dst, const _Input * src, int nfft)
|
||||
{
|
||||
m_traits.prepare(nfft,false,dst,src);
|
||||
m_traits.exec(dst,src);
|
||||
m_traits.postprocess(dst);
|
||||
}
|
||||
|
||||
void inv( Complex * dst, const Complex * src, int nfft)
|
||||
template <typename _Input>
|
||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
||||
{
|
||||
m_traits.prepare(nfft,true,dst,src);
|
||||
m_traits.exec(dst,src);
|
||||
m_traits.postprocess(dst);
|
||||
dst.resize( src.size() );
|
||||
fwd( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( _Output * dst, const Complex * src, int nfft)
|
||||
{
|
||||
m_traits.prepare(nfft,true,dst,src);
|
||||
m_traits.exec(dst,src);
|
||||
m_traits.postprocess(dst);
|
||||
}
|
||||
|
||||
template <typename _Output>
|
||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
||||
{
|
||||
dst.resize( src.size() );
|
||||
inv( &dst[0],&src[0],src.size() );
|
||||
}
|
||||
|
||||
// TODO: fwd,inv for Scalar
|
||||
// TODO: multi-dimensional FFTs
|
||||
// TODO: handle Eigen MatrixBase
|
||||
|
||||
|
@ -34,7 +34,8 @@ namespace Eigen {
|
||||
typedef std::complex<Scalar> Complex;
|
||||
simple_fft_traits() : m_nfft(0) {}
|
||||
|
||||
void prepare(int nfft,bool inverse,Complex * dst,const Complex *src)
|
||||
template <typename _Src>
|
||||
void prepare(int nfft,bool inverse,Complex * dst,const _Src *src)
|
||||
{
|
||||
if (m_nfft == nfft) {
|
||||
// reuse the twiddles, conjugate if necessary
|
||||
@ -73,7 +74,8 @@ namespace Eigen {
|
||||
}while(n>1);
|
||||
}
|
||||
|
||||
void exec(Complex * dst, const Complex * src)
|
||||
template <typename _Src>
|
||||
void exec(Complex * dst, const _Src * src)
|
||||
{
|
||||
work(0, dst, src, 1,1);
|
||||
}
|
||||
@ -89,7 +91,9 @@ namespace Eigen {
|
||||
|
||||
private:
|
||||
|
||||
void work( int stage,Complex * Fout, const Complex * f, size_t fstride,size_t in_stride)
|
||||
|
||||
template <typename _Src>
|
||||
void work( int stage,Complex * Fout, const _Src * f, size_t fstride,size_t in_stride)
|
||||
{
|
||||
int p = m_stageRadix[stage];
|
||||
int m = m_stageRemainder[stage];
|
||||
|
@ -25,55 +25,98 @@
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT.h>
|
||||
|
||||
|
||||
using namespace std;
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>( x); }
|
||||
complex<long double> promote(double x) { return complex<long double>( x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||||
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
for (size_t k0=0;k0<fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = -2.*k0* M_PIl / timebuf.size();
|
||||
for (size_t k1=0;k1<timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
cerr << k0 << ":" << acc << " " << x << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename T1,typename T2>
|
||||
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = min( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||||
difpower += norm(buf1[k] - buf2[k]);
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_fft(int nfft)
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
typedef typename Eigen::FFT<T>::Scalar Scalar;
|
||||
|
||||
FFT<T> fft;
|
||||
vector<Scalar> inbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||
fft.fwd( outbuf,inbuf);
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < 1e-5 );// gross check
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
vector<Complex> inbuf(nfft);
|
||||
vector<Complex> buf3(nfft);
|
||||
vector<Complex> outbuf(nfft);
|
||||
vector<Complex> outbuf;
|
||||
vector<Complex> buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex(
|
||||
(T)(rand()/(double)RAND_MAX - .5),
|
||||
(T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( &outbuf[0] , &inbuf[0] ,nfft);
|
||||
fft.inv( &buf3[0] , &outbuf[0] ,nfft);
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
for (int k0=0;k0<nfft;++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = 2*k0* M_PIl / nfft;
|
||||
for (int k1=0;k1<nfft;++k1) {
|
||||
complex<long double> x(inbuf[k1].real(),inbuf[k1].imag());
|
||||
acc += x * exp( complex<long double>(0,-k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x(outbuf[k0].real(),outbuf[k0].imag());
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
}
|
||||
long double rmse = sqrt(difpower/totalpower);
|
||||
VERIFY( rmse < 1e-5 );// gross check
|
||||
VERIFY( fft_rmse(outbuf,inbuf) < 1e-5 );// gross check
|
||||
|
||||
totalpower=0;
|
||||
difpower=0;
|
||||
for (int k=0;k<nfft;++k) {
|
||||
totalpower += norm( inbuf[k] );
|
||||
difpower += norm(inbuf[k] - buf3[k]);
|
||||
}
|
||||
rmse = sqrt(difpower/totalpower);
|
||||
VERIFY( rmse < 1e-5 );// gross check
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( dif_rmse(inbuf,buf3) < 1e-5 );// gross check
|
||||
}
|
||||
|
||||
void test_FFT()
|
||||
{
|
||||
CALL_SUBTEST(( test_fft<float>(32) )); CALL_SUBTEST(( test_fft<double>(32) )); CALL_SUBTEST(( test_fft<long double>(32) ));
|
||||
CALL_SUBTEST(( test_fft<float>(1024) )); CALL_SUBTEST(( test_fft<double>(1024) )); CALL_SUBTEST(( test_fft<long double>(1024) ));
|
||||
CALL_SUBTEST(( test_fft<float>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<double>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<long double>(2*3*4*5*7) ));
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(1024) ); CALL_SUBTEST( test_complex<double>(1024) ); CALL_SUBTEST( test_complex<long double>(1024) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(1024) ); CALL_SUBTEST( test_scalar<double>(1024) ); CALL_SUBTEST( test_scalar<long double>(1024) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user