added non-optimized real forward fft (no inverse yet)

This commit is contained in:
Mark Borgerding 2009-05-22 22:37:59 -04:00
parent 68cad98bc9
commit 8b4afe3deb
3 changed files with 106 additions and 44 deletions

View File

@ -57,21 +57,36 @@ class FFT
FFT(const traits_type & traits=traits_type() ) :m_traits(traits) { }
void fwd( Complex * dst, const Complex * src, int nfft)
template <typename _Input>
void fwd( Complex * dst, const _Input * src, int nfft)
{
m_traits.prepare(nfft,false,dst,src);
m_traits.exec(dst,src);
m_traits.postprocess(dst);
}
void inv( Complex * dst, const Complex * src, int nfft)
template <typename _Input>
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{
m_traits.prepare(nfft,true,dst,src);
m_traits.exec(dst,src);
m_traits.postprocess(dst);
dst.resize( src.size() );
fwd( &dst[0],&src[0],src.size() );
}
template <typename _Output>
void inv( _Output * dst, const Complex * src, int nfft)
{
m_traits.prepare(nfft,true,dst,src);
m_traits.exec(dst,src);
m_traits.postprocess(dst);
}
template <typename _Output>
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
{
dst.resize( src.size() );
inv( &dst[0],&src[0],src.size() );
}
// TODO: fwd,inv for Scalar
// TODO: multi-dimensional FFTs
// TODO: handle Eigen MatrixBase

View File

@ -34,7 +34,8 @@ namespace Eigen {
typedef std::complex<Scalar> Complex;
simple_fft_traits() : m_nfft(0) {}
void prepare(int nfft,bool inverse,Complex * dst,const Complex *src)
template <typename _Src>
void prepare(int nfft,bool inverse,Complex * dst,const _Src *src)
{
if (m_nfft == nfft) {
// reuse the twiddles, conjugate if necessary
@ -73,7 +74,8 @@ namespace Eigen {
}while(n>1);
}
void exec(Complex * dst, const Complex * src)
template <typename _Src>
void exec(Complex * dst, const _Src * src)
{
work(0, dst, src, 1,1);
}
@ -89,7 +91,9 @@ namespace Eigen {
private:
void work( int stage,Complex * Fout, const Complex * f, size_t fstride,size_t in_stride)
template <typename _Src>
void work( int stage,Complex * Fout, const _Src * f, size_t fstride,size_t in_stride)
{
int p = m_stageRadix[stage];
int m = m_stageRemainder[stage];

View File

@ -25,55 +25,98 @@
#include "main.h"
#include <unsupported/Eigen/FFT.h>
using namespace std;
template < typename T>
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
complex<long double> promote(float x) { return complex<long double>( x); }
complex<long double> promote(double x) { return complex<long double>( x); }
complex<long double> promote(long double x) { return complex<long double>( x); }
template <typename T1,typename T2>
long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
{
long double totalpower=0;
long double difpower=0;
for (size_t k0=0;k0<fftbuf.size();++k0) {
complex<long double> acc = 0;
long double phinc = -2.*k0* M_PIl / timebuf.size();
for (size_t k1=0;k1<timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
}
totalpower += norm(acc);
complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x;
difpower += norm(dif);
cerr << k0 << ":" << acc << " " << x << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
template <typename T1,typename T2>
long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
{
long double totalpower=0;
long double difpower=0;
size_t n = min( buf1.size(),buf2.size() );
for (size_t k=0;k<n;++k) {
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
difpower += norm(buf1[k] - buf2[k]);
}
return sqrt(difpower/totalpower);
}
template <class T>
void test_fft(int nfft)
void test_scalar(int nfft)
{
typedef typename Eigen::FFT<T>::Complex Complex;
typedef typename Eigen::FFT<T>::Scalar Scalar;
FFT<T> fft;
vector<Scalar> inbuf(nfft);
vector<Complex> outbuf;
for (int k=0;k<nfft;++k)
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
fft.fwd( outbuf,inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < 1e-5 );// gross check
}
template <class T>
void test_complex(int nfft)
{
typedef typename Eigen::FFT<T>::Complex Complex;
FFT<T> fft;
vector<Complex> inbuf(nfft);
vector<Complex> buf3(nfft);
vector<Complex> outbuf(nfft);
vector<Complex> outbuf;
vector<Complex> buf3;
for (int k=0;k<nfft;++k)
inbuf[k]= Complex(
(T)(rand()/(double)RAND_MAX - .5),
(T)(rand()/(double)RAND_MAX - .5) );
fft.fwd( &outbuf[0] , &inbuf[0] ,nfft);
fft.inv( &buf3[0] , &outbuf[0] ,nfft);
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
fft.fwd( outbuf , inbuf);
long double totalpower=0;
long double difpower=0;
for (int k0=0;k0<nfft;++k0) {
complex<long double> acc = 0;
long double phinc = 2*k0* M_PIl / nfft;
for (int k1=0;k1<nfft;++k1) {
complex<long double> x(inbuf[k1].real(),inbuf[k1].imag());
acc += x * exp( complex<long double>(0,-k1*phinc) );
}
totalpower += norm(acc);
complex<long double> x(outbuf[k0].real(),outbuf[k0].imag());
complex<long double> dif = acc - x;
difpower += norm(dif);
}
long double rmse = sqrt(difpower/totalpower);
VERIFY( rmse < 1e-5 );// gross check
VERIFY( fft_rmse(outbuf,inbuf) < 1e-5 );// gross check
totalpower=0;
difpower=0;
for (int k=0;k<nfft;++k) {
totalpower += norm( inbuf[k] );
difpower += norm(inbuf[k] - buf3[k]);
}
rmse = sqrt(difpower/totalpower);
VERIFY( rmse < 1e-5 );// gross check
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < 1e-5 );// gross check
}
void test_FFT()
{
CALL_SUBTEST(( test_fft<float>(32) )); CALL_SUBTEST(( test_fft<double>(32) )); CALL_SUBTEST(( test_fft<long double>(32) ));
CALL_SUBTEST(( test_fft<float>(1024) )); CALL_SUBTEST(( test_fft<double>(1024) )); CALL_SUBTEST(( test_fft<long double>(1024) ));
CALL_SUBTEST(( test_fft<float>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<double>(2*3*4*5*7) )); CALL_SUBTEST(( test_fft<long double>(2*3*4*5*7) ));
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
CALL_SUBTEST( test_complex<float>(1024) ); CALL_SUBTEST( test_complex<double>(1024) ); CALL_SUBTEST( test_complex<long double>(1024) );
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
CALL_SUBTEST( test_scalar<float>(1024) ); CALL_SUBTEST( test_scalar<double>(1024) ); CALL_SUBTEST( test_scalar<long double>(1024) );
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
}