doc fixes, and extended Basic Linear Algebra and Reductions sections

This commit is contained in:
Gael Guennebaud 2008-08-20 13:07:46 +00:00
parent db8fbf2b39
commit 8afaeb4ad5
4 changed files with 112 additions and 35 deletions

View File

@ -11,7 +11,7 @@ namespace Eigen {
* (accessible from MatrixBase::cwise()), including:
* - matrix-scalar sum,
* - coeff-wise comparison operators,
* - sin, cos, sqrt, pow, exp, log, square, cube, reciprocal.
* - sin, cos, sqrt, pow, exp, log, square, cube, inverse (reciprocal).
*
* This module also provides various MatrixBase methods, including:
* - \ref MatrixBase::all() "all", \ref MatrixBase::any() "any",

View File

@ -64,7 +64,7 @@ template<typename Derived> class MapBase
inline int stride() const { return derived().stride(); }
/** \Returns an expression equivalent to \c *this but having the \c PacketAccess constant
/** \returns an expression equivalent to \c *this but having the \c PacketAccess constant
* set to \c ForceAligned. Must be reimplemented by the derived class. */
AlignedDerivedType forceAligned() { return derived().forceAligned(); }

View File

@ -96,7 +96,7 @@ struct ei_someOrthogonal_selector<Derived,2>
/** \returns an orthogonal vector of \c *this
*
* The size of \c *this must be at least 2. If the size is exactly 2,
* then the returned vector is a counter clock wise rotation of \c *this, \ie (-y,x).
* then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).
*
* \sa cross()
*/

View File

@ -153,53 +153,130 @@ Eigen's comma initializer usually yields to very optimized code without any over
<h2>Basic Linear Algebra</h2>
As long as you use mathematically well defined operators, you can basically write your matrix
and vector expressions using standard arithmetic operators:
In short all mathematically well defined operators can be used right away as in the following exemple:
\code
mat1 = mat1*1.5 + mat2 * mat3/4;
mat4 -= mat1*1.5 + mat2 * mat3/4;
\endcode
which includes two matrix scalar products ("mat1*1.5" and "mat3/4"), a matrix-matrix product ("mat2 * mat3/4"),
a matrix addition ("+") and substraction with assignment ("-=").
\b dot \b product (inner product):
\code
scalar = vec1.dot(vec2);
\endcode
\b outer \b product:
\code
mat = vec1 * vec2.transpose();
\endcode
\b cross \b product: The cross product is defined in the Geometry module, you therefore have to include it first:
\code
<table>
<tr><td>
matrix/vector product</td><td>\code
col2 = mat1 * col1;
row2 = row1 * mat1; row1 *= mat1;
mat3 = mat1 * mat2; mat3 *= mat1; \endcode
</td></tr>
<tr><td>
add/subtract</td><td>\code
mat3 = mat1 + mat2; mat3 += mat1;
mat3 = mat1 - mat2; mat3 -= mat1;\endcode
</td></tr>
<tr><td>
scalar product</td><td>\code
mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1;
mat3 = mat1 / s1; mat3 /= s1;\endcode
</td></tr>
<tr><td>
dot product (inner product)</td><td>\code
scalar = vec1.dot(vec2);\endcode
</td></tr>
<tr><td>
outer product</td><td>\code
mat = vec1 * vec2.transpose();\endcode
</td></tr>
<tr><td>
cross product</td><td>\code
#include <Eigen/Geometry>
vec3 = vec1.cross(vec2);
\endcode
vec3 = vec1.cross(vec2);\endcode</td></tr>
</table>
By default, Eigen's only allows mathematically well defined operators.
However, thanks to the .cwise() operator prefix, Eigen's matrices also provide
In Eigen only mathematically well defined operators can be used right away,
but don't worry, thanks to the .cwise() operator prefix, Eigen's matrices also provide
a very powerful numerical container supporting most common coefficient wise operators:
<table>
<tr><td></td><td></td><tr>
<tr><td>Coefficient wise product</td>
<td>\code mat3 = mat1.cwise() * mat2; \endcode
</td></tr>
<tr><td>
Add a scalar to all coefficients</td><td>\code
mat3 = mat1.cwise() + scalar;
mat3.cwise() += scalar;
mat3.cwise() -= scalar;
\endcode
</td></tr>
<tr><td>
Coefficient wise division</td><td>\code
mat3 = mat1.cwise() / mat2; \endcode
</td></tr>
<tr><td>
Coefficient wise reciprocal</td><td>\code
mat3 = mat1.cwise().inverse(); \endcode
</td></tr>
<tr><td>
Coefficient wise comparisons \n
(support all operators)</td><td>\code
mat3 = mat1.cwise() < mat2;
mat3 = mat1.cwise() <= mat2;
mat3 = mat1.cwise() > mat2;
etc.
\endcode
</td></tr>
<tr><td>
Trigo:\n sin, cos, tan</td><td>\code
mat3 = mat1.cwise().sin();
etc.
\endcode
</td></tr>
<tr><td>
Power:\n pow, square, cube, sqrt, exp, log</td><td>\code
mat3 = mat1.cwise().square();
mat3 = mat1.cwise().pow(5);
mat3 = mat1.cwise().log();
etc.
\endcode
</td></tr>
<tr><td>
min, max, absolute value</td><td>\code
mat3 = mat1.cwise().min(mat2);
mat3 = mat1.cwise().max(mat2);
mat3 = mat1.cwise().abs(mat2);
mat3 = mat1.cwise().abs2(mat2);
\endcode</td></tr>
</table>
* Coefficient wise product: \code mat3 = mat1.cwise() * mat2; \endcode
* Coefficient wise division: \code mat3 = mat1.cwise() / mat2; \endcode
* Coefficient wise reciprocal: \code mat3 = mat1.cwise().inverse(); \endcode
* Add a scalar to a matrix: \code mat3 = mat1.cwise() + scalar; \endcode
* Coefficient wise comparison: \code mat3 = mat1.cwise() < mat2; \endcode
* Finally, \c .cwise() offers many common numerical functions including abs, pow, exp, sin, cos, tan, e.g.:
\code mat3 = mat1.cwise().sin(); \endcode
<h2>Reductions</h2>
\code
scalar = mat.sum(); scalar = mat.norm(); scalar = mat.minCoeff();
vec = mat.colwise().sum(); vec = mat.colwise().norm(); vec = mat.colwise().minCoeff();
vec = mat.rowwise().sum(); vec = mat.rowwise().norm(); vec = mat.rowwise().minCoeff();
Reductions can be done matrix-wise, column-wise or row-wise, e.g.:
<table>
<tr><td>\code mat \endcode
</td><td>\code
5 3 1
2 7 8
9 4 6
\endcode
Other natively supported reduction operations include maxCoeff(), norm2(), all() and any().
</td></tr>
<tr><td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
<tr><td>\code mat.maxCoeff(); \endcode</td><td>\code 9 \endcode</td></tr>
<tr><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
<tr><td>\code mat.colwise().maxCoeff(); \endcode</td><td>\code 9 7 8 \endcode</td></tr>
<tr><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
1
2
4
\endcode</td></tr>
<tr><td>\code mat.rowwise().maxCoeff(); \endcode</td><td>\code
5
8
9
\endcode</td></tr>
</table>
Eigen provides several other reduction methods such as sum(), norm(), norm2(), all(), and any().
The all() and any() functions are especially useful in combinaison with coeff-wise comparison operators.
<h2>Sub matrices</h2>