change solveTriangularInPlace() to take a pointer as input (as discussed on IRC).

extended the documentation of the triangular solver.
This commit is contained in:
Gael Guennebaud 2008-08-12 07:49:59 +00:00
parent 13ad88736e
commit 8a3e6b1ee2
4 changed files with 41 additions and 23 deletions

View File

@ -58,7 +58,7 @@ private:
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearVectorize = MightVectorize && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MaySliceVectorize = MightVectorize && int(InnerMaxSize)==Dynamic /* slice vectorization can be slow, so we only
MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize /* slice vectorization can be slow, so we only
want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case
of a dynamic block in a fixed-size matrix */
};

View File

@ -323,7 +323,7 @@ template<typename Derived> class MatrixBase
typename OtherDerived::Eval solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
void solveTriangularInPlace(MatrixBase<OtherDerived>* p_other) const;
template<typename OtherDerived>

View File

@ -37,21 +37,21 @@ template<typename Lhs, typename Rhs,
: -1,
int StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor
>
struct ei_trisolve_selector;
struct ei_solve_triangular_selector;
// transform a Part xpr to a Flagged xpr
template<typename Lhs, unsigned int LhsMode, typename Rhs, int TriangularPart, int StorageOrder>
struct ei_trisolve_selector<Part<Lhs,LhsMode>,Rhs,TriangularPart,StorageOrder>
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,TriangularPart,StorageOrder>
{
static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
{
ei_trisolve_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
ei_solve_triangular_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
}
};
// forward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_trisolve_selector<Lhs,Rhs,Lower,RowMajor>
struct ei_solve_triangular_selector<Lhs,Rhs,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
@ -74,7 +74,7 @@ struct ei_trisolve_selector<Lhs,Rhs,Lower,RowMajor>
// backward substitution, row-major
template<typename Lhs, typename Rhs>
struct ei_trisolve_selector<Lhs,Rhs,Upper,RowMajor>
struct ei_solve_triangular_selector<Lhs,Rhs,Upper,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
@ -101,7 +101,7 @@ struct ei_trisolve_selector<Lhs,Rhs,Upper,RowMajor>
// FIXME the Lower and Upper specialization could be merged using a small helper class
// performing reflexions on the coordinates...
template<typename Lhs, typename Rhs>
struct ei_trisolve_selector<Lhs,Rhs,Lower,ColMajor>
struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type Packet;
@ -168,7 +168,7 @@ struct ei_trisolve_selector<Lhs,Rhs,Lower,ColMajor>
// backward substitution, col-major
// see the previous specialization for details on the algorithm
template<typename Lhs, typename Rhs>
struct ei_trisolve_selector<Lhs,Rhs,Upper,ColMajor>
struct ei_solve_triangular_selector<Lhs,Rhs,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
@ -214,40 +214,58 @@ struct ei_trisolve_selector<Lhs,Rhs,Upper,ColMajor>
/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
*
* \sa solveTriangular()
* See MatrixBase:solveTriangular() for the details.
*/
template<typename Derived>
template<typename OtherDerived>
void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other) const
void MatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>* p_other) const
{
ei_assert(p_other!=0);
ei_assert(derived().cols() == derived().rows());
ei_assert(derived().cols() == other.rows());
ei_assert(derived().cols() == p_other->rows());
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
ei_trisolve_selector<Derived, OtherDerived>::run(derived(), other.derived());
ei_solve_triangular_selector<Derived, OtherDerived>::run(derived(), p_other->derived());
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other
* It works as a forward (resp. backward) substitution if \c *this is an upper (resp. lower)
* triangular matrix.
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other.
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
* is an upper (resp. lower) triangular matrix.
*
* It is required that \c *this be marked as either an upper or a lower triangular matrix, as
* can be done by marked(), and as is automatically the case with expressions such as those returned
* It is required that \c *this be marked as either an upper or a lower triangular matrix, which
* can be done by marked(), and that is automatically the case with expressions such as those returned
* by extract().
*
* \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
*
* Example: \include MatrixBase_marked.cpp
* Output: \verbinclude MatrixBase_marked.out
*
* This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
* a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
* Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
* instead of solveTriangular().
*
* For users comming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
* \sa marked(), extract()
* \b Tips: to perform a \em "right-inverse-multiply" you can simply transpose the operation, e.g.:
* \code
* M * T^1 <=> T.transpose().solveTriangularInPlace(M.transpose());
* \endcode
*
* \sa solveTriangularInPlace(), marked(), extract()
*/
template<typename Derived>
template<typename OtherDerived>
typename OtherDerived::Eval MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
typename OtherDerived::Eval res(other);
solveTriangularInPlace(res);
solveTriangularInPlace(&res);
return res;
}

View File

@ -399,7 +399,7 @@ void LU<MatrixType>::computeKernel(Matrix<typename MatrixType::Scalar,
m_lu.corner(TopLeft, m_rank, m_rank)
.template marked<Upper>()
.solveTriangularInPlace(y);
.solveTriangularInPlace(&y);
for(int i = 0; i < m_rank; i++)
result->row(m_q.coeff(i)) = y.row(i);
@ -451,7 +451,7 @@ bool LU<MatrixType>::solve(
l.setZero();
l.corner(Eigen::TopLeft,rows,smalldim)
= m_lu.corner(Eigen::TopLeft,rows,smalldim);
l.template marked<UnitLower>().solveTriangularInPlace(c);
l.template marked<UnitLower>().solveTriangularInPlace(&c);
// Step 3
if(!isSurjective())
@ -468,7 +468,7 @@ bool LU<MatrixType>::solve(
d(c.corner(TopLeft, m_rank, c.cols()));
m_lu.corner(TopLeft, m_rank, m_rank)
.template marked<Upper>()
.solveTriangularInPlace(d);
.solveTriangularInPlace(&d);
// Step 4
result->resize(m_lu.cols(), b.cols());