mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Adding Sycl Backend for TensorGenerator.h.
This commit is contained in:
parent
4f07ac16b0
commit
89dfd51fae
@ -97,10 +97,9 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_generator(op.generator())
|
||||
: m_generator(op.generator()), m_argImpl(op.expression(), device)
|
||||
{
|
||||
TensorEvaluator<ArgType, Device> impl(op.expression(), device);
|
||||
m_dimensions = impl.dimensions();
|
||||
m_dimensions = m_argImpl.dimensions();
|
||||
|
||||
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
||||
m_strides[0] = 1;
|
||||
@ -155,6 +154,12 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
/// required by sycl in order to extract the accessor
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_argImpl; }
|
||||
/// required by sycl in order to extract the accessor
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Generator& functor() const { return m_generator; }
|
||||
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
|
||||
@ -178,6 +183,8 @@ struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
|
||||
Dimensions m_dimensions;
|
||||
array<Index, NumDims> m_strides;
|
||||
Generator m_generator;
|
||||
// required by sycl
|
||||
TensorEvaluator<ArgType, Device> m_argImpl;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -171,6 +171,7 @@ if(EIGEN_TEST_CXX11)
|
||||
ei_add_test_sycl(cxx11_tensor_layout_swap_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_image_patchOP_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_inflation_sycl "-std=c++11")
|
||||
ei_add_test_sycl(cxx11_tensor_generator_sycl "-std=c++11")
|
||||
endif(EIGEN_TEST_SYCL)
|
||||
# It should be safe to always run these tests as there is some fallback code for
|
||||
# older compiler that don't support cxx11.
|
||||
|
147
unsupported/test/cxx11_tensor_generator_sycl.cpp
Normal file
147
unsupported/test/cxx11_tensor_generator_sycl.cpp
Normal file
@ -0,0 +1,147 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2016
|
||||
// Mehdi Goli Codeplay Software Ltd.
|
||||
// Ralph Potter Codeplay Software Ltd.
|
||||
// Luke Iwanski Codeplay Software Ltd.
|
||||
// Contact: <eigen@codeplay.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
||||
#define EIGEN_TEST_NO_COMPLEX
|
||||
#define EIGEN_TEST_FUNC cxx11_tensor_generator_sycl
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
||||
#define EIGEN_USE_SYCL
|
||||
static const float error_threshold =1e-8f;
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/CXX11/Tensor>
|
||||
|
||||
using Eigen::Tensor;
|
||||
struct Generator1D {
|
||||
Generator1D() { }
|
||||
|
||||
float operator()(const array<Eigen::DenseIndex, 1>& coordinates) const {
|
||||
return coordinates[0];
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DataType, int DataLayout, typename IndexType>
|
||||
static void test_1D_sycl(const Eigen::SyclDevice& sycl_device)
|
||||
{
|
||||
|
||||
IndexType sizeDim1 = 6;
|
||||
array<IndexType, 1> tensorRange = {{sizeDim1}};
|
||||
Tensor<DataType, 1, DataLayout,IndexType> vec(tensorRange);
|
||||
Tensor<DataType, 1, DataLayout,IndexType> result(tensorRange);
|
||||
|
||||
const size_t tensorBuffSize =vec.size()*sizeof(DataType);
|
||||
DataType* gpu_data_vec = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
|
||||
TensorMap<Tensor<DataType, 1, DataLayout,IndexType>> gpu_vec(gpu_data_vec, tensorRange);
|
||||
TensorMap<Tensor<DataType, 1, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||||
|
||||
sycl_device.memcpyHostToDevice(gpu_data_vec, vec.data(), tensorBuffSize);
|
||||
gpu_result.device(sycl_device)=gpu_vec.generate(Generator1D());
|
||||
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||||
|
||||
for (IndexType i = 0; i < 6; ++i) {
|
||||
VERIFY_IS_EQUAL(result(i), i);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct Generator2D {
|
||||
Generator2D() { }
|
||||
|
||||
float operator()(const array<Eigen::DenseIndex, 2>& coordinates) const {
|
||||
return 3 * coordinates[0] + 11 * coordinates[1];
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DataType, int DataLayout, typename IndexType>
|
||||
static void test_2D_sycl(const Eigen::SyclDevice& sycl_device)
|
||||
{
|
||||
IndexType sizeDim1 = 5;
|
||||
IndexType sizeDim2 = 7;
|
||||
array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}};
|
||||
Tensor<DataType, 2, DataLayout,IndexType> matrix(tensorRange);
|
||||
Tensor<DataType, 2, DataLayout,IndexType> result(tensorRange);
|
||||
|
||||
const size_t tensorBuffSize =matrix.size()*sizeof(DataType);
|
||||
DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
|
||||
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_matrix(gpu_data_matrix, tensorRange);
|
||||
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||||
|
||||
sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize);
|
||||
gpu_result.device(sycl_device)=gpu_matrix.generate(Generator2D());
|
||||
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||||
|
||||
for (IndexType i = 0; i < 5; ++i) {
|
||||
for (IndexType j = 0; j < 5; ++j) {
|
||||
VERIFY_IS_EQUAL(result(i, j), 3*i + 11*j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename DataType, int DataLayout, typename IndexType>
|
||||
static void test_gaussian_sycl(const Eigen::SyclDevice& sycl_device)
|
||||
{
|
||||
IndexType rows = 32;
|
||||
IndexType cols = 48;
|
||||
array<DataType, 2> means;
|
||||
means[0] = rows / 2.0f;
|
||||
means[1] = cols / 2.0f;
|
||||
array<DataType, 2> std_devs;
|
||||
std_devs[0] = 3.14f;
|
||||
std_devs[1] = 2.7f;
|
||||
internal::GaussianGenerator<DataType, Eigen::DenseIndex, 2> gaussian_gen(means, std_devs);
|
||||
|
||||
array<IndexType, 2> tensorRange = {{rows, cols}};
|
||||
Tensor<DataType, 2, DataLayout,IndexType> matrix(tensorRange);
|
||||
Tensor<DataType, 2, DataLayout,IndexType> result(tensorRange);
|
||||
|
||||
const size_t tensorBuffSize =matrix.size()*sizeof(DataType);
|
||||
DataType* gpu_data_matrix = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
DataType* gpu_data_result = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
|
||||
|
||||
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_matrix(gpu_data_matrix, tensorRange);
|
||||
TensorMap<Tensor<DataType, 2, DataLayout,IndexType>> gpu_result(gpu_data_result, tensorRange);
|
||||
|
||||
sycl_device.memcpyHostToDevice(gpu_data_matrix, matrix.data(), tensorBuffSize);
|
||||
gpu_result.device(sycl_device)=gpu_matrix.generate(gaussian_gen);
|
||||
sycl_device.memcpyDeviceToHost(result.data(), gpu_data_result, tensorBuffSize);
|
||||
|
||||
for (IndexType i = 0; i < rows; ++i) {
|
||||
for (IndexType j = 0; j < cols; ++j) {
|
||||
DataType g_rows = powf(rows/2.0f - i, 2) / (3.14f * 3.14f) * 0.5f;
|
||||
DataType g_cols = powf(cols/2.0f - j, 2) / (2.7f * 2.7f) * 0.5f;
|
||||
DataType gaussian = expf(-g_rows - g_cols);
|
||||
Eigen::internal::isApprox(result(i, j), gaussian, error_threshold);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename DataType, typename dev_Selector> void sycl_generator_test_per_device(dev_Selector s){
|
||||
QueueInterface queueInterface(s);
|
||||
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
||||
test_1D_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||||
test_1D_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||||
test_2D_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||||
test_2D_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||||
test_gaussian_sycl<DataType, RowMajor, int64_t>(sycl_device);
|
||||
test_gaussian_sycl<DataType, ColMajor, int64_t>(sycl_device);
|
||||
}
|
||||
void test_cxx11_tensor_generator_sycl()
|
||||
{
|
||||
for (const auto& device :Eigen::get_sycl_supported_devices()) {
|
||||
CALL_SUBTEST(sycl_generator_test_per_device<float>(device));
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user