mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Improved patch from Manuel Yguel:
Enhance AlignedBox to accept integral types and add some usefull methods: diagonal, volume, sample.
This commit is contained in:
parent
bb290977b8
commit
8918d18e21
@ -54,7 +54,7 @@ template<typename T> struct NumTraits;
|
||||
template<typename T> struct ei_default_float_numtraits
|
||||
: std::numeric_limits<T>
|
||||
{
|
||||
inline static T higest() { return std::numeric_limits<T>::max(); }
|
||||
inline static T highest() { return std::numeric_limits<T>::max(); }
|
||||
inline static T lowest() { return -std::numeric_limits<T>::max(); }
|
||||
};
|
||||
|
||||
|
@ -44,36 +44,69 @@ public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
enum { AmbientDimAtCompileTime = _AmbientDim };
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef NumTraits<Scalar> ScalarTraits;
|
||||
typedef typename ScalarTraits::Real RealScalar;
|
||||
typedef typename ScalarTraits::FloatingPoint FloatingPoint;
|
||||
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
||||
|
||||
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
|
||||
enum CornerType
|
||||
{
|
||||
/** 1D names */
|
||||
Min=0, Max=1,
|
||||
|
||||
/** Added names for 2D */
|
||||
BottomLeft=0, BottomRight=1,
|
||||
TopLeft=2, TopRight=3,
|
||||
|
||||
/** Added names for 3D */
|
||||
BottomLeftFloor=0, BottomRightFloor=1,
|
||||
TopLeftFloor=2, TopRightFloor=3,
|
||||
BottomLeftCeil=4, BottomRightCeil=5,
|
||||
TopLeftCeil=6, TopRightCeil=7
|
||||
};
|
||||
|
||||
|
||||
/** Default constructor initializing a null box. */
|
||||
inline explicit AlignedBox()
|
||||
{ if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
|
||||
{ if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); }
|
||||
|
||||
/** Constructs a null box with \a _dim the dimension of the ambient space. */
|
||||
inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
|
||||
{ setNull(); }
|
||||
{ setEmpty(); }
|
||||
|
||||
/** Constructs a box with extremities \a _min and \a _max. */
|
||||
inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
|
||||
template<typename OtherVectorType1, typename OtherVectorType2>
|
||||
inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
|
||||
|
||||
/** Constructs a box containing a single point \a p. */
|
||||
inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
|
||||
template<typename Derived>
|
||||
inline explicit AlignedBox(const MatrixBase<Derived>& a_p)
|
||||
{
|
||||
const typename ei_nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = p;
|
||||
m_max = p;
|
||||
}
|
||||
|
||||
~AlignedBox() {}
|
||||
|
||||
/** \returns the dimension in which the box holds */
|
||||
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
|
||||
|
||||
/** \returns true if the box is null, i.e, empty. */
|
||||
inline bool isNull() const { return (m_min.array() > m_max.array()).any(); }
|
||||
/** \deprecated use isEmpty */
|
||||
inline bool isNull() const { return isEmpty(); }
|
||||
|
||||
/** Makes \c *this a null/empty box. */
|
||||
inline void setNull()
|
||||
/** \deprecated use setEmpty */
|
||||
inline void setNull() { setEmpty(); }
|
||||
|
||||
/** \returns true if the box is empty. */
|
||||
inline bool isEmpty() const { return (m_min.cwise() > m_max).any(); }
|
||||
|
||||
/** Makes \c *this an empty box. */
|
||||
inline void setEmpty()
|
||||
{
|
||||
m_min.setConstant( std::numeric_limits<Scalar>::max());
|
||||
m_max.setConstant(-std::numeric_limits<Scalar>::max());
|
||||
m_min.setConstant( ScalarTraits::highest() );
|
||||
m_max.setConstant( ScalarTraits::lowest() );
|
||||
}
|
||||
|
||||
/** \returns the minimal corner */
|
||||
@ -86,27 +119,110 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
inline VectorType& max() { return m_max; }
|
||||
|
||||
/** \returns the center of the box */
|
||||
inline VectorType center() const { return (m_min + m_max) / 2; }
|
||||
inline const CwiseUnaryOp<ei_scalar_quotient1_op<Scalar>,
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>, VectorType, VectorType> >
|
||||
center() const
|
||||
{ return (m_min+m_max)/2; }
|
||||
|
||||
/** \returns the lengths of the sides of the bounding box.
|
||||
* Note that this function does not get the same
|
||||
* result for integral or floating scalar types: see
|
||||
*/
|
||||
inline const CwiseBinaryOp< ei_scalar_difference_op<Scalar>, VectorType, VectorType> sizes() const
|
||||
{ return m_max - m_min; }
|
||||
|
||||
/** \returns the volume of the bounding box */
|
||||
inline Scalar volume() const
|
||||
{ return sizes().prod(); }
|
||||
|
||||
/** \returns an expression for the bounding box diagonal vector
|
||||
* if the length of the diagonal is needed: diagonal().norm()
|
||||
* will provide it.
|
||||
*/
|
||||
inline CwiseBinaryOp< ei_scalar_difference_op<Scalar>, VectorType, VectorType> diagonal() const
|
||||
{ return sizes(); }
|
||||
|
||||
/** \returns the vertex of the bounding box at the corner defined by
|
||||
* the corner-id corner. It works only for a 1D, 2D or 3D bounding box.
|
||||
* For 1D bounding boxes corners are named by 2 enum constants:
|
||||
* BottomLeft and BottomRight.
|
||||
* For 2D bounding boxes, corners are named by 4 enum constants:
|
||||
* BottomLeft, BottomRight, TopLeft, TopRight.
|
||||
* For 3D bounding boxes, the following names are added:
|
||||
* BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
|
||||
*/
|
||||
inline VectorType corner(CornerType corner) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
|
||||
|
||||
VectorType res;
|
||||
|
||||
int mult = 1;
|
||||
for(int d=0; d<dim(); ++d)
|
||||
{
|
||||
if( mult & corner ) res[d] = m_max[d];
|
||||
else res[d] = m_min[d];
|
||||
mult *= 2;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \returns a random point inside the bounding box sampled with
|
||||
* a uniform distribution */
|
||||
inline VectorType sample() const
|
||||
{
|
||||
VectorType r;
|
||||
for(int d=0; d<dim(); ++d)
|
||||
{
|
||||
if(ScalarTraits::HasFloatingPoint)
|
||||
{
|
||||
r[d] = m_min[d] + (m_max[d]-m_min[d])
|
||||
* (ei_random<Scalar>() + ei_random_amplitude<Scalar>())
|
||||
/ (Scalar(2)*ei_random_amplitude<Scalar>() );
|
||||
}
|
||||
else
|
||||
r[d] = ei_random(m_min[d], m_max[d]);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/** \returns true if the point \a p is inside the box \c *this. */
|
||||
inline bool contains(const VectorType& p) const
|
||||
{ return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all(); }
|
||||
template<typename Derived>
|
||||
inline bool contains(const MatrixBase<Derived>& a_p) const
|
||||
{
|
||||
const typename ei_nested<Derived,2>::type p(a_p.derived());
|
||||
return (m_min.array()<=p.array()).all() && (p.array()<=m_max.array()).all();
|
||||
}
|
||||
|
||||
/** \returns true if the box \a b is entirely inside the box \c *this. */
|
||||
inline bool contains(const AlignedBox& b) const
|
||||
{ return (m_min.array()<=b.min().array()).all() && (b.max().array()<=m_max.array()).all(); }
|
||||
|
||||
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
|
||||
inline AlignedBox& extend(const VectorType& p)
|
||||
{ m_min = m_min.cwiseMin(p); m_max = m_max.cwiseMax(p); return *this; }
|
||||
template<typename Derived>
|
||||
inline AlignedBox& extend(const MatrixBase<Derived>& a_p)
|
||||
{
|
||||
const typename ei_nested<Derived,2>::type p(a_p.derived());
|
||||
m_min = m_min.cwiseMin(p);
|
||||
m_max = m_max.cwiseMax(p);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
|
||||
inline AlignedBox& extend(const AlignedBox& b)
|
||||
{ m_min = m_min.cwiseMin(b.m_min); m_max = m_max.cwiseMax(b.m_max); return *this; }
|
||||
{
|
||||
m_min = m_min.cwiseMin(b.m_min);
|
||||
m_max = m_max.cwiseMax(b.m_max);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
|
||||
inline AlignedBox& clamp(const AlignedBox& b)
|
||||
{ m_min = m_min.cwiseMax(b.m_min); m_max = m_max.cwiseMin(b.m_max); return *this; }
|
||||
{
|
||||
m_min = m_min.cwiseMax(b.m_min);
|
||||
m_max = m_max.cwiseMin(b.m_max);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns an AlignedBox that is the intersection of \a b and \c *this */
|
||||
inline AlignedBox intersection(const AlignedBox& b) const
|
||||
@ -117,14 +233,21 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
{ return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
|
||||
|
||||
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
|
||||
inline AlignedBox& translate(const VectorType& t)
|
||||
{ m_min += t; m_max += t; return *this; }
|
||||
template<typename Derived>
|
||||
inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
|
||||
{
|
||||
const typename ei_nested<Derived,2>::type t(a_t.derived());
|
||||
m_min += t;
|
||||
m_max += t;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the squared distance between the point \a p and the box \c *this,
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa exteriorDistance()
|
||||
*/
|
||||
inline Scalar squaredExteriorDistance(const VectorType& p) const;
|
||||
template<typename Derived>
|
||||
inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& a_p) const;
|
||||
|
||||
/** \returns the squared distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
@ -136,15 +259,16 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
* and zero if \a p is inside the box.
|
||||
* \sa squaredExteriorDistance()
|
||||
*/
|
||||
inline Scalar exteriorDistance(const VectorType& p) const
|
||||
{ return ei_sqrt(squaredExteriorDistance(p)); }
|
||||
template<typename Derived>
|
||||
inline FloatingPoint exteriorDistance(const MatrixBase<Derived>& p) const
|
||||
{ return ei_sqrt(FloatingPoint(squaredExteriorDistance(p))); }
|
||||
|
||||
/** \returns the distance between the boxes \a b and \c *this,
|
||||
* and zero if the boxes intersect.
|
||||
* \sa squaredExteriorDistance()
|
||||
*/
|
||||
inline Scalar exteriorDistance(const AlignedBox& b) const
|
||||
{ return ei_sqrt(squaredExteriorDistance(b)); }
|
||||
inline FloatingPoint exteriorDistance(const AlignedBox& b) const
|
||||
{ return ei_sqrt(FloatingPoint(squaredExteriorDistance(b))); }
|
||||
|
||||
/** \returns \c *this with scalar type casted to \a NewScalarType
|
||||
*
|
||||
@ -171,7 +295,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
|
||||
* determined by \a prec.
|
||||
*
|
||||
* \sa MatrixBase::isApprox() */
|
||||
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
|
||||
bool isApprox(const AlignedBox& other, RealScalar prec = ScalarTraits::dummy_precision()) const
|
||||
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
|
||||
|
||||
protected:
|
||||
@ -179,33 +303,49 @@ protected:
|
||||
VectorType m_min, m_max;
|
||||
};
|
||||
|
||||
template<typename Scalar,int AmbiantDim>
|
||||
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
|
||||
|
||||
|
||||
template<typename Scalar,int AmbientDim>
|
||||
template<typename Derived>
|
||||
inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
|
||||
{
|
||||
const typename ei_nested<Derived,2*AmbientDim>::type p(a_p.derived());
|
||||
Scalar dist2 = 0.;
|
||||
Scalar aux;
|
||||
for (int k=0; k<dim(); ++k)
|
||||
{
|
||||
if ((aux = (p[k]-m_min[k]))<Scalar(0))
|
||||
if( m_min[k] > p[k] )
|
||||
{
|
||||
aux = m_min[k] - p[k];
|
||||
dist2 += aux*aux;
|
||||
else if ( (aux = (m_max[k]-p[k]))<Scalar(0) )
|
||||
}
|
||||
else if( p[k] > m_max[k] )
|
||||
{
|
||||
aux = p[k] - m_max[k];
|
||||
dist2 += aux*aux;
|
||||
}
|
||||
}
|
||||
return dist2;
|
||||
}
|
||||
|
||||
template<typename Scalar,int AmbiantDim>
|
||||
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const AlignedBox& b) const
|
||||
template<typename Scalar,int AmbientDim>
|
||||
inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
|
||||
{
|
||||
Scalar dist2 = 0.;
|
||||
Scalar aux;
|
||||
for (int k=0; k<dim(); ++k)
|
||||
{
|
||||
if ((aux = (b.m_min[k]-m_max[k]))>0.)
|
||||
if( m_min[k] > b.m_max[k] )
|
||||
{
|
||||
aux = m_min[k] - b.m_max[k];
|
||||
dist2 += aux*aux;
|
||||
else if ( (aux = (m_min[k]-b.m_max[k]))>0. )
|
||||
}
|
||||
else if( b.m_min[k] > m_max[k] )
|
||||
{
|
||||
aux = b.m_min[k] - m_max[k];
|
||||
dist2 += aux*aux;
|
||||
}
|
||||
}
|
||||
return dist2;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user