mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
Add multi-threading for sparse-row-major * dense-row-major
This commit is contained in:
parent
2f3287da7d
commit
8810baaed4
@ -88,10 +88,11 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, A
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename LhsEval::InnerIterator LhsInnerIterator;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
|
||||
{
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
LhsEval lhsEval(lhs);
|
||||
for(Index c=0; c<rhs.cols(); ++c)
|
||||
{
|
||||
for(Index j=0; j<lhs.outerSize(); ++j)
|
||||
@ -111,16 +112,37 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, t
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename LhsEval::InnerIterator LhsInnerIterator;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
|
||||
{
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
for(Index j=0; j<lhs.outerSize(); ++j)
|
||||
Index n = lhs.rows();
|
||||
LhsEval lhsEval(lhs);
|
||||
|
||||
#ifdef EIGEN_HAS_OPENMP
|
||||
Eigen::initParallel();
|
||||
Index threads = Eigen::nbThreads();
|
||||
// This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
|
||||
// It basically represents the minimal amount of work to be done to be worth it.
|
||||
if(threads>1 && lhsEval.nonZerosEstimate()*rhs.cols() > 20000)
|
||||
{
|
||||
typename Res::RowXpr res_j(res.row(j));
|
||||
for(LhsInnerIterator it(lhsEval,j); it ;++it)
|
||||
res_j += (alpha*it.value()) * rhs.row(it.index());
|
||||
#pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
|
||||
for(Index i=0; i<n; ++i)
|
||||
processRow(lhsEval,rhs,res,alpha,i);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
for(Index i=0; i<n; ++i)
|
||||
processRow(lhsEval, rhs, res, alpha, i);
|
||||
}
|
||||
}
|
||||
|
||||
static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, Res& res, const typename Res::Scalar& alpha, Index i)
|
||||
{
|
||||
typename Res::RowXpr res_i(res.row(i));
|
||||
for(LhsInnerIterator it(lhsEval,i); it ;++it)
|
||||
res_i += (alpha*it.value()) * rhs.row(it.index());
|
||||
}
|
||||
};
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user