mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-19 18:40:38 +08:00
Several improvements in sparse module:
* add a LDL^T factorization with solver using code from T. Davis's LDL library (LPGL2.1+) * various bug fixes in trianfular solver, matrix product, etc. * improve cmake files for the supported libraries * split the sparse unit test * etc.
This commit is contained in:
parent
9aba671cfc
commit
86ccd99d8d
@ -81,6 +81,7 @@ namespace Eigen {
|
||||
#include "src/Sparse/SparseProduct.h"
|
||||
#include "src/Sparse/TriangularSolver.h"
|
||||
#include "src/Sparse/SparseLLT.h"
|
||||
#include "src/Sparse/SparseLDLT.h"
|
||||
#include "src/Sparse/SparseLU.h"
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
|
@ -36,7 +36,7 @@ template<typename _Scalar> class AmbiVector
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
AmbiVector(int size)
|
||||
: m_buffer(0), m_size(0), m_allocatedSize(0), m_mode(-1)
|
||||
: m_buffer(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
|
||||
{
|
||||
resize(size);
|
||||
}
|
||||
@ -72,18 +72,35 @@ template<typename _Scalar> class AmbiVector
|
||||
|
||||
void reallocate(int size)
|
||||
{
|
||||
Scalar* newBuffer = new Scalar[size/* *4 + (size * sizeof(int)*2)/sizeof(Scalar)+1 */];
|
||||
int copySize = std::min(size, m_size);
|
||||
memcpy(newBuffer, m_buffer, copySize * sizeof(Scalar));
|
||||
// if the size of the matrix is not too large, let's allocate a bit more than needed such
|
||||
// that we can handle dense vector even in sparse mode.
|
||||
delete[] m_buffer;
|
||||
m_buffer = newBuffer;
|
||||
m_allocatedSize = size;
|
||||
|
||||
if (size<1000)
|
||||
{
|
||||
int allocSize = (size * sizeof(ListEl))/sizeof(Scalar);
|
||||
m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl);
|
||||
m_buffer = new Scalar[allocSize];
|
||||
}
|
||||
else
|
||||
{
|
||||
m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl);
|
||||
m_buffer = new Scalar[size];
|
||||
}
|
||||
m_size = size;
|
||||
m_start = 0;
|
||||
m_end = m_size;
|
||||
}
|
||||
|
||||
void reallocateSparse()
|
||||
{
|
||||
int copyElements = m_allocatedElements;
|
||||
m_allocatedElements = std::min(int(m_allocatedElements*1.5),m_size);
|
||||
int allocSize = m_allocatedElements * sizeof(ListEl);
|
||||
allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0);
|
||||
Scalar* newBuffer = new Scalar[allocSize];
|
||||
memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
}
|
||||
|
||||
protected:
|
||||
// element type of the linked list
|
||||
struct ListEl
|
||||
@ -99,6 +116,7 @@ template<typename _Scalar> class AmbiVector
|
||||
int m_start;
|
||||
int m_end;
|
||||
int m_allocatedSize;
|
||||
int m_allocatedElements;
|
||||
int m_mode;
|
||||
|
||||
// linked list mode
|
||||
@ -219,6 +237,9 @@ Scalar& AmbiVector<Scalar>::coeffRef(int i)
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_llSize>=m_allocatedElements)
|
||||
reallocateSparse();
|
||||
ei_internal_assert(m_llSize<m_size && "internal error: overflow in sparse mode");
|
||||
// let's insert a new coefficient
|
||||
ListEl& el = llElements[m_llSize];
|
||||
el.value = Scalar(0);
|
||||
|
@ -155,6 +155,7 @@ void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
|
||||
}
|
||||
|
||||
cholmod_sparse A = const_cast<MatrixType&>(a).asCholmodMatrix();
|
||||
// TODO
|
||||
if (m_flags&IncompleteFactorization)
|
||||
{
|
||||
m_cholmod.nmethods = 1;
|
||||
|
346
Eigen/src/Sparse/SparseLDLT.h
Normal file
346
Eigen/src/Sparse/SparseLDLT.h
Normal file
@ -0,0 +1,346 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
/*
|
||||
|
||||
NOTE: the _symbolic, and _numeric functions has been adapted from
|
||||
the LDL library:
|
||||
|
||||
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
||||
|
||||
LDL License:
|
||||
|
||||
Your use or distribution of LDL or any modified version of
|
||||
LDL implies that you agree to this License.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
||||
USA
|
||||
|
||||
Permission is hereby granted to use or copy this program under the
|
||||
terms of the GNU LGPL, provided that the Copyright, this License,
|
||||
and the Availability of the original version is retained on all copies.
|
||||
User documentation of any code that uses this code or any modified
|
||||
version of this code must cite the Copyright, this License, the
|
||||
Availability note, and "Used by permission." Permission to modify
|
||||
the code and to distribute modified code is granted, provided the
|
||||
Copyright, this License, and the Availability note are retained,
|
||||
and a notice that the code was modified is included.
|
||||
*/
|
||||
|
||||
#ifndef EIGEN_SPARSELDLT_H
|
||||
#define EIGEN_SPARSELDLT_H
|
||||
|
||||
/** \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLDLT
|
||||
*
|
||||
* \brief LDLT Cholesky decomposition of a sparse matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition
|
||||
*
|
||||
* \sa class LDLT, class LDLT
|
||||
*/
|
||||
template<typename MatrixType, int Backend = DefaultBackend>
|
||||
class SparseLDLT
|
||||
{
|
||||
protected:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef SparseMatrix<Scalar,Lower|UnitDiagBit> CholMatrixType;
|
||||
typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
|
||||
|
||||
enum {
|
||||
SupernodalFactorIsDirty = 0x10000,
|
||||
MatrixLIsDirty = 0x20000
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/** Creates a dummy LDLT factorization object with flags \a flags. */
|
||||
SparseLDLT(int flags = 0)
|
||||
: m_flags(flags), m_status(0)
|
||||
{
|
||||
ei_assert((MatrixType::Flags&RowMajorBit)==0);
|
||||
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
||||
}
|
||||
|
||||
/** Creates a LDLT object and compute the respective factorization of \a matrix using
|
||||
* flags \a flags. */
|
||||
SparseLDLT(const MatrixType& matrix, int flags = 0)
|
||||
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
||||
{
|
||||
ei_assert((MatrixType::Flags&RowMajorBit)==0);
|
||||
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
||||
*
|
||||
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
||||
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
||||
* useful to initialize an iterative solver.
|
||||
*
|
||||
* \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed
|
||||
* even if the matrix is positive definite.
|
||||
*
|
||||
* Note that the exact meaning of this parameter might depends on the actual
|
||||
* backend. Moreover, not all backends support this feature.
|
||||
*
|
||||
* \sa precision() */
|
||||
void setPrecision(RealScalar v) { m_precision = v; }
|
||||
|
||||
/** \returns the current precision.
|
||||
*
|
||||
* \sa setPrecision() */
|
||||
RealScalar precision() const { return m_precision; }
|
||||
|
||||
/** Sets the flags. Possible values are:
|
||||
* - CompleteFactorization
|
||||
* - IncompleteFactorization
|
||||
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
||||
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
*
|
||||
* \sa flags() */
|
||||
void settagss(int f) { m_flags = f; }
|
||||
/** \returns the current flags */
|
||||
int flags() const { return m_flags; }
|
||||
|
||||
/** Computes/re-computes the LDLT factorization */
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
/** Perform a symbolic factorization */
|
||||
void _symbolic(const MatrixType& matrix);
|
||||
/** Perform the actual factorization using the previously
|
||||
* computed symbolic factorization */
|
||||
bool _numeric(const MatrixType& matrix);
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
||||
|
||||
/** \returns the coefficients of the diagonal matrix D */
|
||||
inline VectorType vectorD(void) const { return m_diag; }
|
||||
|
||||
template<typename Derived>
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
|
||||
protected:
|
||||
CholMatrixType m_matrix;
|
||||
VectorType m_diag;
|
||||
VectorXi m_parent; // elimination tree
|
||||
VectorXi m_nonZerosPerCol;
|
||||
// VectorXi m_w; // workspace
|
||||
RealScalar m_precision;
|
||||
int m_flags;
|
||||
mutable int m_status;
|
||||
bool m_succeeded;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the LDLT decomposition of matrix \a a
|
||||
* using the default algorithm.
|
||||
*/
|
||||
template<typename MatrixType, int Backend>
|
||||
void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a)
|
||||
{
|
||||
_symbolic(a);
|
||||
m_succeeded = _numeric(a);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Backend>
|
||||
void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
m_parent.resize(size);
|
||||
m_nonZerosPerCol.resize(size);
|
||||
int * tags = ei_alloc_stack(int, size);
|
||||
|
||||
const int* Ap = a._outerIndexPtr();
|
||||
const int* Ai = a._innerIndexPtr();
|
||||
int* Lp = m_matrix._outerIndexPtr();
|
||||
const int* P = 0;
|
||||
int* Pinv = 0;
|
||||
|
||||
if (P)
|
||||
{
|
||||
/* If P is present then compute Pinv, the inverse of P */
|
||||
for (int k = 0; k < size; k++)
|
||||
Pinv[P[k]] = k;
|
||||
}
|
||||
for (int k = 0; k < size; k++)
|
||||
{
|
||||
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
||||
m_parent[k] = -1; /* parent of k is not yet known */
|
||||
tags[k] = k; /* mark node k as visited */
|
||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
||||
int kk = P ? P[k] : k; /* kth original, or permuted, column */
|
||||
int p2 = Ap[kk+1];
|
||||
for (int p = Ap[kk]; p < p2; p++)
|
||||
{
|
||||
/* A (i,k) is nonzero (original or permuted A) */
|
||||
int i = Pinv ? Pinv[Ai[p]] : Ai[p];
|
||||
if (i < k)
|
||||
{
|
||||
/* follow path from i to root of etree, stop at flagged node */
|
||||
for (; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
/* find parent of i if not yet determined */
|
||||
if (m_parent[i] == -1)
|
||||
m_parent[i] = k;
|
||||
m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* construct Lp index array from m_nonZerosPerCol column counts */
|
||||
Lp[0] = 0;
|
||||
for (int k = 0; k < size; k++)
|
||||
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k];
|
||||
|
||||
m_matrix.resizeNonZeros(Lp[size]);
|
||||
ei_free_stack(tags, int, size);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int Backend>
|
||||
bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
|
||||
{
|
||||
assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
assert(m_parent.size()==size);
|
||||
assert(m_nonZerosPerCol.size()==size);
|
||||
|
||||
const int* Ap = a._outerIndexPtr();
|
||||
const int* Ai = a._innerIndexPtr();
|
||||
const Scalar* Ax = a._valuePtr();
|
||||
const int* Lp = m_matrix._outerIndexPtr();
|
||||
int* Li = m_matrix._innerIndexPtr();
|
||||
Scalar* Lx = m_matrix._valuePtr();
|
||||
m_diag.resize(size);
|
||||
|
||||
Scalar * y = ei_alloc_stack(Scalar, size);
|
||||
int * pattern = ei_alloc_stack(int, size);
|
||||
int * tags = ei_alloc_stack(int, size);
|
||||
|
||||
const int* P = 0;
|
||||
const int* Pinv = 0;
|
||||
bool ok = true;
|
||||
|
||||
for (int k = 0; k < size; k++)
|
||||
{
|
||||
/* compute nonzero pattern of kth row of L, in topological order */
|
||||
y[k] = 0.0; /* Y(0:k) is now all zero */
|
||||
int top = size; /* stack for pattern is empty */
|
||||
tags[k] = k; /* mark node k as visited */
|
||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
||||
int kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
|
||||
int p2 = Ap[kk+1];
|
||||
for (int p = Ap[kk]; p < p2; p++)
|
||||
{
|
||||
int i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */
|
||||
if (i <= k)
|
||||
{
|
||||
y[i] += Ax[p]; /* scatter A(i,k) into Y (sum duplicates) */
|
||||
int len;
|
||||
for (len = 0; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
pattern[len++] = i; /* L(k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
while (len > 0)
|
||||
pattern[--top] = pattern[--len];
|
||||
}
|
||||
}
|
||||
/* compute numerical values kth row of L (a sparse triangular solve) */
|
||||
m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */
|
||||
y[k] = 0.0;
|
||||
for (; top < size; top++)
|
||||
{
|
||||
int i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
||||
Scalar yi = y[i]; /* get and clear Y(i) */
|
||||
y[i] = 0.0;
|
||||
int p2 = Lp[i] + m_nonZerosPerCol[i];
|
||||
int p;
|
||||
for (p = Lp[i]; p < p2; p++)
|
||||
y[Li[p]] -= Lx[p] * yi;
|
||||
Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */
|
||||
m_diag[k] -= l_ki * yi;
|
||||
Li[p] = k; /* store L(k,i) in column form of L */
|
||||
Lx[p] = l_ki;
|
||||
m_nonZerosPerCol[i]++; /* increment count of nonzeros in col i */
|
||||
}
|
||||
if (m_diag[k] == 0.0)
|
||||
{
|
||||
ok = false; /* failure, D(k,k) is zero */
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ei_free_stack(y, Scalar, size);
|
||||
ei_free_stack(pattern, int, size);
|
||||
ei_free_stack(tags, int, size);
|
||||
|
||||
return ok; /* success, diagonal of D is all nonzero */
|
||||
}
|
||||
|
||||
/** Computes b = L^-T L^-1 b */
|
||||
template<typename MatrixType, int Backend>
|
||||
template<typename Derived>
|
||||
bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==b.rows());
|
||||
if (!m_succeeded)
|
||||
return false;
|
||||
|
||||
if (m_matrix.nonZeros()>0) // otherwise L==I
|
||||
m_matrix.solveTriangularInPlace(b);
|
||||
b = b.cwise() / m_diag;
|
||||
// FIXME should be .adjoint() but it fails to compile...
|
||||
|
||||
if (m_matrix.nonZeros()>0) // otherwise L==I
|
||||
m_matrix.transpose().solveTriangularInPlace(b);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SPARSELDLT_H
|
@ -213,7 +213,7 @@ class SparseMatrix
|
||||
|
||||
inline void swap(SparseMatrix& other)
|
||||
{
|
||||
EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
||||
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
||||
std::swap(m_outerIndex, other.m_outerIndex);
|
||||
std::swap(m_innerSize, other.m_innerSize);
|
||||
std::swap(m_outerSize, other.m_outerSize);
|
||||
|
@ -159,7 +159,7 @@ class SparseMatrixBase : public MatrixBase<Derived>
|
||||
}
|
||||
else
|
||||
{
|
||||
LinkedVectorMatrix<Scalar, RowMajorBit> trans = m.derived();
|
||||
SparseMatrix<Scalar, RowMajorBit> trans = m.derived();
|
||||
s << trans;
|
||||
}
|
||||
}
|
||||
|
@ -162,6 +162,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||
tempVector.restart();
|
||||
Scalar x = rhsIt.value();
|
||||
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
|
@ -70,7 +70,9 @@ struct ei_solve_triangular_selector<Lhs,Rhs,Upper,RowMajor|IsSparse>
|
||||
{
|
||||
Scalar tmp = other.coeff(i,col);
|
||||
typename Lhs::InnerIterator it(lhs, i);
|
||||
for(++it; it; ++it)
|
||||
if (it.index() == i)
|
||||
++it;
|
||||
for(; it; ++it)
|
||||
{
|
||||
tmp -= it.value() * other.coeff(it.index(),col);
|
||||
}
|
||||
@ -107,7 +109,9 @@ struct ei_solve_triangular_selector<Lhs,Rhs,Lower,ColMajor|IsSparse>
|
||||
other.coeffRef(i,col) /= it.value();
|
||||
}
|
||||
Scalar tmp = other.coeffRef(i,col);
|
||||
for(++it; it; ++it)
|
||||
if (it.index()==i)
|
||||
++it;
|
||||
for(; it; ++it)
|
||||
other.coeffRef(it.index(), col) -= tmp * it.value();
|
||||
}
|
||||
}
|
||||
|
@ -70,7 +70,7 @@ void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flag
|
||||
std::cout << ":\t" << timer.value() << endl;
|
||||
|
||||
std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
|
||||
std::cout << "sparse\n" << chol.matrixL() << "%\n";
|
||||
// std::cout << "sparse\n" << chol.matrixL() << "%\n";
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
@ -118,7 +118,7 @@ int main(int argc, char *argv[])
|
||||
if (!ei_isMuchSmallerThan(ei_abs(chol.matrixL()(i,j)), 0.1))
|
||||
count++;
|
||||
std::cout << "dense: " << "nnz = " << count << "\n";
|
||||
std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
|
||||
// std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -61,6 +61,10 @@ if(CHOLMOD_LIBRARIES)
|
||||
|
||||
endif(CHOLMOD_LIBRARIES)
|
||||
|
||||
if(CHOLMOD_LIBRARIES AND CMAKE_COMPILER_IS_GNUCXX)
|
||||
set(CHOLMOD_LIBRARIES ${CHOLMOD_LIBRARIES} -lgfortran)
|
||||
endif(CHOLMOD_LIBRARIES AND CMAKE_COMPILER_IS_GNUCXX)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(CHOLMOD DEFAULT_MSG
|
||||
CHOLMOD_INCLUDES CHOLMOD_LIBRARIES)
|
||||
|
@ -13,6 +13,10 @@ find_path(SUPERLU_INCLUDES
|
||||
|
||||
find_library(SUPERLU_LIBRARIES superlu PATHS $ENV{SUPERLUDIR} ${LIB_INSTALL_DIR})
|
||||
|
||||
if(SUPERLU_LIBRARIES AND CMAKE_COMPILER_IS_GNUCXX)
|
||||
set(SUPERLU_LIBRARIES ${SUPERLU_LIBRARIES} -lgfortran)
|
||||
endif(SUPERLU_LIBRARIES AND CMAKE_COMPILER_IS_GNUCXX)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(SUPERLU DEFAULT_MSG
|
||||
SUPERLU_INCLUDES SUPERLU_LIBRARIES)
|
||||
|
@ -3,6 +3,11 @@ if (UMFPACK_INCLUDES AND UMFPACK_LIBRARIES)
|
||||
set(UMFPACK_FIND_QUIETLY TRUE)
|
||||
endif (UMFPACK_INCLUDES AND UMFPACK_LIBRARIES)
|
||||
|
||||
enable_language(Fortran)
|
||||
find_package(BLAS)
|
||||
|
||||
if(BLAS_FOUND)
|
||||
|
||||
find_path(UMFPACK_INCLUDES
|
||||
NAMES
|
||||
umfpack.h
|
||||
@ -39,6 +44,12 @@ if(UMFPACK_LIBRARIES)
|
||||
|
||||
endif(UMFPACK_LIBRARIES)
|
||||
|
||||
if(UMFPACK_LIBRARIES)
|
||||
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${BLAS_LIBRARIES})
|
||||
endif(UMFPACK_LIBRARIES)
|
||||
|
||||
endif(BLAS_FOUND)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(UMFPACK DEFAULT_MSG
|
||||
UMFPACK_INCLUDES UMFPACK_LIBRARIES)
|
||||
|
@ -158,18 +158,19 @@ ei_add_test(smallvectors)
|
||||
ei_add_test(map)
|
||||
ei_add_test(array)
|
||||
ei_add_test(triangular)
|
||||
ei_add_test(cholesky " " ${GSL_LIBRARIES})
|
||||
ei_add_test(cholesky " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(lu ${EI_OFLAG})
|
||||
ei_add_test(determinant)
|
||||
ei_add_test(inverse)
|
||||
ei_add_test(qr)
|
||||
ei_add_test(eigensolver " " ${GSL_LIBRARIES})
|
||||
ei_add_test(eigensolver " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(svd)
|
||||
ei_add_test(geometry)
|
||||
ei_add_test(hyperplane)
|
||||
ei_add_test(parametrizedline)
|
||||
ei_add_test(alignedbox)
|
||||
ei_add_test(regression)
|
||||
ei_add_test(sparse " " ${SPARSE_LIBS})
|
||||
ei_add_test(sparse_basic " " "${SPARSE_LIBS}")
|
||||
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
||||
|
||||
endif(BUILD_TESTS)
|
||||
|
92
test/sparse.h
Normal file
92
test/sparse.h
Normal file
@ -0,0 +1,92 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_TESTSPARSE_H
|
||||
|
||||
#ifdef __GNUC__
|
||||
#include <ext/hash_map>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
||||
#include <google/sparse_hash_map>
|
||||
#endif
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Cholesky>
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
enum {
|
||||
ForceNonZeroDiag = 1,
|
||||
MakeLowerTriangular = 2,
|
||||
MakeUpperTriangular = 4
|
||||
};
|
||||
|
||||
/* Initializes both a sparse and dense matrix with same random values,
|
||||
* and a ratio of \a density non zero entries.
|
||||
* \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
|
||||
* allowing to control the shape of the matrix.
|
||||
* \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
|
||||
* and zero coefficients respectively.
|
||||
*/
|
||||
template<typename Scalar> void
|
||||
initSparse(double density,
|
||||
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
||||
SparseMatrix<Scalar>& sparseMat,
|
||||
int flags = 0,
|
||||
std::vector<Vector2i>* zeroCoords = 0,
|
||||
std::vector<Vector2i>* nonzeroCoords = 0)
|
||||
{
|
||||
sparseMat.startFill(refMat.rows()*refMat.cols()*density);
|
||||
for(int j=0; j<refMat.cols(); j++)
|
||||
{
|
||||
for(int i=0; i<refMat.rows(); i++)
|
||||
{
|
||||
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
||||
if ((flags&ForceNonZeroDiag) && (i==j))
|
||||
{
|
||||
v = ei_random<Scalar>()*Scalar(3.);
|
||||
v = v*v + Scalar(5.);
|
||||
}
|
||||
if ((flags & MakeLowerTriangular) && j>i)
|
||||
v = Scalar(0);
|
||||
else if ((flags & MakeUpperTriangular) && j<i)
|
||||
v = Scalar(0);
|
||||
if (v!=Scalar(0))
|
||||
{
|
||||
sparseMat.fill(i,j) = v;
|
||||
if (nonzeroCoords)
|
||||
nonzeroCoords->push_back(Vector2i(i,j));
|
||||
}
|
||||
else if (zeroCoords)
|
||||
{
|
||||
zeroCoords->push_back(Vector2i(i,j));
|
||||
}
|
||||
refMat(i,j) = v;
|
||||
}
|
||||
}
|
||||
sparseMat.endFill();
|
||||
}
|
||||
|
||||
#endif // EIGEN_TESTSPARSE_H
|
@ -22,63 +22,7 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifdef __GNUC__
|
||||
#include <ext/hash_map>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_GOOGLEHASH_SUPPORT
|
||||
#include <google/sparse_hash_map>
|
||||
#endif
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Cholesky>
|
||||
#include <Eigen/LU>
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
enum {
|
||||
ForceNonZeroDiag = 1,
|
||||
MakeLowerTriangular = 2,
|
||||
MakeUpperTriangular = 4
|
||||
};
|
||||
|
||||
template<typename Scalar> void
|
||||
initSparse(double density,
|
||||
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
||||
SparseMatrix<Scalar>& sparseMat,
|
||||
int flags = 0,
|
||||
std::vector<Vector2i>* zeroCoords = 0,
|
||||
std::vector<Vector2i>* nonzeroCoords = 0)
|
||||
{
|
||||
sparseMat.startFill(refMat.rows()*refMat.cols()*density);
|
||||
for(int j=0; j<refMat.cols(); j++)
|
||||
{
|
||||
for(int i=0; i<refMat.rows(); i++)
|
||||
{
|
||||
Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
|
||||
if ((flags&ForceNonZeroDiag) && (i==j))
|
||||
{
|
||||
v = ei_random<Scalar>()*Scalar(3.);
|
||||
v = v*v + Scalar(5.);
|
||||
}
|
||||
if ((flags & MakeLowerTriangular) && j>i)
|
||||
v = Scalar(0);
|
||||
else if ((flags & MakeUpperTriangular) && j<i)
|
||||
v = Scalar(0);
|
||||
if (v!=Scalar(0))
|
||||
{
|
||||
sparseMat.fill(i,j) = v;
|
||||
if (nonzeroCoords)
|
||||
nonzeroCoords->push_back(Vector2i(i,j));
|
||||
}
|
||||
else if (zeroCoords)
|
||||
{
|
||||
zeroCoords->push_back(Vector2i(i,j));
|
||||
}
|
||||
refMat(i,j) = v;
|
||||
}
|
||||
}
|
||||
sparseMat.endFill();
|
||||
}
|
||||
#include "sparse.h"
|
||||
|
||||
template<typename SetterType,typename DenseType, typename SparseType>
|
||||
bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
||||
@ -98,7 +42,7 @@ bool test_random_setter(SparseType& sm, const DenseType& ref, const std::vector<
|
||||
return sm.isApprox(ref);
|
||||
}
|
||||
|
||||
template<typename Scalar> void sparse(int rows, int cols)
|
||||
template<typename Scalar> void sparse_basic(int rows, int cols)
|
||||
{
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
@ -113,8 +57,8 @@ template<typename Scalar> void sparse(int rows, int cols)
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
VERIFY(zeroCoords.size()>0 && "re-run the test");
|
||||
VERIFY(nonzeroCoords.size()>0 && "re-run the test");
|
||||
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
|
||||
return;
|
||||
|
||||
// test coeff and coeffRef
|
||||
for (int i=0; i<(int)zeroCoords.size(); ++i)
|
||||
@ -128,7 +72,7 @@ template<typename Scalar> void sparse(int rows, int cols)
|
||||
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
||||
|
||||
VERIFY_IS_APPROX(m, refMat);
|
||||
|
||||
/*
|
||||
// test InnerIterators and Block expressions
|
||||
for (int t=0; t<10; ++t)
|
||||
{
|
||||
@ -167,6 +111,7 @@ template<typename Scalar> void sparse(int rows, int cols)
|
||||
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
|
||||
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
|
||||
}
|
||||
*/
|
||||
|
||||
// test SparseSetters
|
||||
// coherent setter
|
||||
@ -234,7 +179,7 @@ template<typename Scalar> void sparse(int rows, int cols)
|
||||
VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
|
||||
VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
|
||||
}
|
||||
#if 0
|
||||
|
||||
// test matrix product
|
||||
{
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
||||
@ -251,123 +196,13 @@ template<typename Scalar> void sparse(int rows, int cols)
|
||||
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
||||
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
||||
}
|
||||
|
||||
// test triangular solver
|
||||
{
|
||||
DenseVector vec2 = vec1, vec3 = vec1;
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
||||
|
||||
// lower
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
||||
VERIFY_IS_APPROX(refMat2.template marked<Lower>().solveTriangular(vec2),
|
||||
m2.template marked<Lower>().solveTriangular(vec3));
|
||||
|
||||
// upper
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
||||
VERIFY_IS_APPROX(refMat2.template marked<Upper>().solveTriangular(vec2),
|
||||
m2.template marked<Upper>().solveTriangular(vec3));
|
||||
|
||||
// TODO test row major
|
||||
}
|
||||
|
||||
// test LLT
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
||||
refMat2 += refMat2.adjoint();
|
||||
refMat2.diagonal() *= 0.5;
|
||||
|
||||
refMat2.llt().solve(b, &refX);
|
||||
typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
|
||||
//VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
||||
#endif
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
||||
#endif
|
||||
}
|
||||
|
||||
// test LU
|
||||
{
|
||||
static int count = 0;
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
LU<DenseMatrix> refLu(refMat2);
|
||||
refLu.solve(b, &refX);
|
||||
Scalar refDet = refLu.determinant();
|
||||
x.setZero();
|
||||
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
||||
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
{
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
||||
if (slu.succeeded())
|
||||
{
|
||||
if (slu.solve(b,&x)) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
||||
}
|
||||
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
||||
if (count==0) {
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
{
|
||||
// check solve
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
||||
if (slu.succeeded()) {
|
||||
if (slu.solve(b,&x)) {
|
||||
if (count==0) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
||||
}
|
||||
}
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant());
|
||||
// TODO check the extracted data
|
||||
//std::cerr << slu.matrixL() << "\n";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
count++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_sparse()
|
||||
void test_sparse_basic()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( sparse<double>(8, 8) );
|
||||
CALL_SUBTEST( sparse<std::complex<double> >(16, 16) );
|
||||
CALL_SUBTEST( sparse<double>(33, 33) );
|
||||
CALL_SUBTEST( sparse_basic<double>(8, 8) );
|
||||
CALL_SUBTEST( sparse_basic<std::complex<double> >(16, 16) );
|
||||
CALL_SUBTEST( sparse_basic<double>(33, 33) );
|
||||
}
|
||||
}
|
180
test/sparse_solvers.cpp
Normal file
180
test/sparse_solvers.cpp
Normal file
@ -0,0 +1,180 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
template<typename Scalar> void sparse_solvers(int rows, int cols)
|
||||
{
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
Scalar eps = 1e-6;
|
||||
|
||||
DenseVector vec1 = DenseVector::Random(rows);
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
|
||||
// test triangular solver
|
||||
{
|
||||
DenseVector vec2 = vec1, vec3 = vec1;
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
||||
|
||||
// lower
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
||||
VERIFY_IS_APPROX(refMat2.template marked<Lower>().solveTriangular(vec2),
|
||||
m2.template marked<Lower>().solveTriangular(vec3));
|
||||
|
||||
// upper
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
||||
VERIFY_IS_APPROX(refMat2.template marked<Upper>().solveTriangular(vec2),
|
||||
m2.template marked<Upper>().solveTriangular(vec3));
|
||||
|
||||
// TODO test row major
|
||||
}
|
||||
|
||||
// test LLT
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
||||
refMat2 += refMat2.adjoint();
|
||||
refMat2.diagonal() *= 0.5;
|
||||
|
||||
refMat2.llt().solve(b, &refX);
|
||||
typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
|
||||
//VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
||||
#endif
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
||||
x = b;
|
||||
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
||||
#endif
|
||||
}
|
||||
|
||||
// test LDLT
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
// TODO fix the issue with complex (see SparseLDT::solveInPlace)
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
||||
refMat2 += refMat2.adjoint();
|
||||
refMat2.diagonal() *= 0.5;
|
||||
|
||||
refMat2.ldlt().solve(b, &refX);
|
||||
typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
||||
if (ldlt.succeeded())
|
||||
ldlt.solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
||||
}
|
||||
|
||||
// test LU
|
||||
{
|
||||
static int count = 0;
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
LU<DenseMatrix> refLu(refMat2);
|
||||
refLu.solve(b, &refX);
|
||||
Scalar refDet = refLu.determinant();
|
||||
x.setZero();
|
||||
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
||||
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
{
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
||||
if (slu.succeeded())
|
||||
{
|
||||
if (slu.solve(b,&x)) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
||||
}
|
||||
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
||||
if (count==0) {
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
{
|
||||
// check solve
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
||||
if (slu.succeeded()) {
|
||||
if (slu.solve(b,&x)) {
|
||||
if (count==0) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
||||
}
|
||||
}
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant());
|
||||
// TODO check the extracted data
|
||||
//std::cerr << slu.matrixL() << "\n";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
count++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void test_sparse_solvers()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( sparse_solvers<double>(8, 8) );
|
||||
CALL_SUBTEST( sparse_solvers<std::complex<double> >(16, 16) );
|
||||
CALL_SUBTEST( sparse_solvers<double>(33, 33) );
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user