mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Add lapack interface to JacobiSVD and BDCSVD
This commit is contained in:
parent
c566cfe2ba
commit
8472e697ca
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
|
||||
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -15,3 +15,4 @@
|
||||
|
||||
#include "cholesky.cpp"
|
||||
#include "lu.cpp"
|
||||
#include "svd.cpp"
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -15,3 +15,4 @@
|
||||
|
||||
#include "cholesky.cpp"
|
||||
#include "lu.cpp"
|
||||
#include "svd.cpp"
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -15,3 +15,4 @@
|
||||
#include "cholesky.cpp"
|
||||
#include "lu.cpp"
|
||||
#include "eigenvalues.cpp"
|
||||
#include "svd.cpp"
|
||||
|
@ -7,10 +7,10 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
#include "lapack_common.h"
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
|
||||
// computes eigen values and vectors of a general N-by-N matrix A
|
||||
EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Scalar* w, Scalar* /*work*/, int* lwork, int *info))
|
||||
{
|
||||
// TODO exploit the work buffer
|
||||
@ -22,24 +22,7 @@ EIGEN_LAPACK_FUNC(syev,(char *jobz, char *uplo, int* n, Scalar* a, int *lda, Sca
|
||||
else if(*n<0) *info = -3;
|
||||
else if(*lda<std::max(1,*n)) *info = -5;
|
||||
else if((!query_size) && *lwork<std::max(1,3**n-1)) *info = -8;
|
||||
|
||||
// if(*info==0)
|
||||
// {
|
||||
// int nb = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
|
||||
// LWKOPT = MAX( 1, ( NB+2 )*N )
|
||||
// WORK( 1 ) = LWKOPT
|
||||
// *
|
||||
// IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
|
||||
// $ INFO = -8
|
||||
// END IF
|
||||
// *
|
||||
// IF( INFO.NE.0 ) THEN
|
||||
// CALL XERBLA( 'SSYEV ', -INFO )
|
||||
// RETURN
|
||||
// ELSE IF( LQUERY ) THEN
|
||||
// RETURN
|
||||
// END IF
|
||||
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
int e = -*info;
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -18,6 +18,11 @@
|
||||
|
||||
typedef Eigen::Map<Eigen::Transpositions<Eigen::Dynamic,Eigen::Dynamic,int> > PivotsType;
|
||||
|
||||
#if ISCOMPLEX
|
||||
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X) X,
|
||||
#else
|
||||
#define EIGEN_LAPACK_ARG_IF_COMPLEX(X)
|
||||
#endif
|
||||
|
||||
|
||||
#endif // EIGEN_LAPACK_COMMON_H
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -15,3 +15,4 @@
|
||||
#include "cholesky.cpp"
|
||||
#include "lu.cpp"
|
||||
#include "eigenvalues.cpp"
|
||||
#include "svd.cpp"
|
||||
|
138
lapack/svd.cpp
Normal file
138
lapack/svd.cpp
Normal file
@ -0,0 +1,138 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "lapack_common.h"
|
||||
#include <Eigen/SVD>
|
||||
#include <unsupported/Eigen/BDCSVD>
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
|
||||
EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
|
||||
{
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork==-1;
|
||||
int diag_size = (std::min)(*m,*n);
|
||||
|
||||
*info = 0;
|
||||
if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1;
|
||||
else if(*m<0) *info = -2;
|
||||
else if(*n<0) *info = -3;
|
||||
else if(*lda<std::max(1,*m)) *info = -5;
|
||||
else if(*lda<std::max(1,*m)) *info = -8;
|
||||
else if(*ldu <1 || (*jobz=='A' && *ldu <*m)
|
||||
|| (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8;
|
||||
else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n)
|
||||
|| (*jobz=='S' && *ldvt<diag_size)
|
||||
|| (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10;
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6);
|
||||
}
|
||||
|
||||
if(query_size)
|
||||
{
|
||||
*lwork = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(*n==0 || *m==0)
|
||||
return 0;
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
|
||||
int option = *jobz=='A' ? ComputeFullU|ComputeFullV
|
||||
: *jobz=='S' ? ComputeThinU|ComputeThinV
|
||||
: *jobz=='O' ? ComputeThinU|ComputeThinV
|
||||
: 0;
|
||||
|
||||
BDCSVD<PlainMatrixType> svd(mat,option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
|
||||
if(*jobz=='A')
|
||||
{
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='S')
|
||||
{
|
||||
matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O' && *m>=*n)
|
||||
{
|
||||
matrix(a,*m,*n,*lda) = svd.matrixU();
|
||||
matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
}
|
||||
else if(*jobz=='O')
|
||||
{
|
||||
matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
|
||||
EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
|
||||
EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
|
||||
{
|
||||
// TODO exploit the work buffer
|
||||
bool query_size = *lwork==-1;
|
||||
int diag_size = (std::min)(*m,*n);
|
||||
|
||||
*info = 0;
|
||||
if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1;
|
||||
else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N')
|
||||
|| (*jobu=='O' && *jobv=='O')) *info = -2;
|
||||
else if(*m<0) *info = -3;
|
||||
else if(*n<0) *info = -4;
|
||||
else if(*lda<std::max(1,*m)) *info = -6;
|
||||
else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9;
|
||||
else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n)
|
||||
|| (*jobv=='S' && *ldvt<diag_size)) *info = -11;
|
||||
|
||||
if(*info!=0)
|
||||
{
|
||||
int e = -*info;
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6);
|
||||
}
|
||||
|
||||
if(query_size)
|
||||
{
|
||||
*lwork = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(*n==0 || *m==0)
|
||||
return 0;
|
||||
|
||||
PlainMatrixType mat(*m,*n);
|
||||
mat = matrix(a,*m,*n,*lda);
|
||||
|
||||
int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
|
||||
| (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
|
||||
|
||||
JacobiSVD<PlainMatrixType> svd(mat,option);
|
||||
|
||||
make_vector(s,diag_size) = svd.singularValues().head(diag_size);
|
||||
|
||||
if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU();
|
||||
else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU();
|
||||
|
||||
if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
|
||||
else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user