mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-06 19:10:36 +08:00
merge
This commit is contained in:
commit
84551d067e
@ -84,7 +84,6 @@ namespace Eigen {
|
||||
|
||||
#include "src/Sparse/SparseUtil.h"
|
||||
#include "src/Sparse/SparseMatrixBase.h"
|
||||
#include "src/Sparse/SparseNestByValue.h"
|
||||
#include "src/Sparse/CompressedStorage.h"
|
||||
#include "src/Sparse/AmbiVector.h"
|
||||
#include "src/Sparse/RandomSetter.h"
|
||||
|
@ -131,11 +131,11 @@ MatrixBase<Derived>::select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
|
||||
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
|
||||
MatrixBase<Derived>::select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
typename ThenDerived::Scalar elseScalar) const
|
||||
{
|
||||
return Select<Derived,ThenDerived,NestByValue<typename ThenDerived::ConstantReturnType> >(
|
||||
return Select<Derived,ThenDerived,typename ThenDerived::ConstantReturnType>(
|
||||
derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar));
|
||||
}
|
||||
|
||||
@ -148,11 +148,11 @@ MatrixBase<Derived>::select(const MatrixBase<ThenDerived>& thenMatrix,
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
|
||||
MatrixBase<Derived>::select(typename ElseDerived::Scalar thenScalar,
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const
|
||||
{
|
||||
return Select<Derived,NestByValue<typename ElseDerived::ConstantReturnType>,ElseDerived>(
|
||||
return Select<Derived,typename ElseDerived::ConstantReturnType,ElseDerived>(
|
||||
derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived());
|
||||
}
|
||||
|
||||
|
@ -436,22 +436,22 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
template<typename OtherDerived>
|
||||
CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
ExpressionType,
|
||||
NestByValue<typename ExtendedType<OtherDerived>::Type> >
|
||||
typename ExtendedType<OtherDerived>::Type>
|
||||
operator+(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived);
|
||||
return m_matrix + extendedTo(other).nestByValue();
|
||||
return m_matrix + extendedTo(other);
|
||||
}
|
||||
|
||||
/** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
ExpressionType,
|
||||
NestByValue<typename ExtendedType<OtherDerived>::Type> >
|
||||
typename ExtendedType<OtherDerived>::Type>
|
||||
operator-(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived);
|
||||
return m_matrix - extendedTo(other).nestByValue();
|
||||
return m_matrix - extendedTo(other);
|
||||
}
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
@ -478,10 +478,10 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
Direction==Horizontal ? 1 : int(ei_traits<ExpressionType>::ColsAtCompileTime)>
|
||||
HNormalized_Factors;
|
||||
typedef CwiseBinaryOp<ei_scalar_quotient_op<typename ei_traits<ExpressionType>::Scalar>,
|
||||
NestByValue<HNormalized_Block>,
|
||||
NestByValue<Replicate<NestByValue<HNormalized_Factors>,
|
||||
HNormalized_Block,
|
||||
Replicate<HNormalized_Factors,
|
||||
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
||||
Direction==Horizontal ? HNormalized_SizeMinusOne : 1> > >
|
||||
Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
|
||||
HNormalizedReturnType;
|
||||
|
||||
const HNormalizedReturnType hnormalized() const;
|
||||
|
@ -224,18 +224,18 @@ template<> struct ei_llt_inplace<UpperTriangular>
|
||||
template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
|
||||
{
|
||||
typedef TriangularView<MatrixType, LowerTriangular> MatrixL;
|
||||
typedef TriangularView<NestByValue<typename MatrixType::AdjointReturnType>, UpperTriangular> MatrixU;
|
||||
typedef TriangularView<typename MatrixType::AdjointReturnType, UpperTriangular> MatrixU;
|
||||
inline static MatrixL getL(const MatrixType& m) { return m; }
|
||||
inline static MatrixU getU(const MatrixType& m) { return m.adjoint().nestByValue(); }
|
||||
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
static bool inplace_decomposition(MatrixType& m)
|
||||
{ return ei_llt_inplace<LowerTriangular>::blocked(m); }
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
|
||||
{
|
||||
typedef TriangularView<NestByValue<typename MatrixType::AdjointReturnType>, LowerTriangular> MatrixL;
|
||||
typedef TriangularView<typename MatrixType::AdjointReturnType, LowerTriangular> MatrixL;
|
||||
typedef TriangularView<MatrixType, UpperTriangular> MatrixU;
|
||||
inline static MatrixL getL(const MatrixType& m) { return m.adjoint().nestByValue(); }
|
||||
inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
|
||||
inline static MatrixU getU(const MatrixType& m) { return m; }
|
||||
static bool inplace_decomposition(MatrixType& m)
|
||||
{ return ei_llt_inplace<UpperTriangular>::blocked(m); }
|
||||
|
@ -141,7 +141,7 @@ class BandMatrix : public AnyMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs
|
||||
};
|
||||
typedef Block<DataType,1, DiagonalSize> BuildType;
|
||||
typedef typename ei_meta_if<Conjugate,
|
||||
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>,NestByValue<BuildType> >,
|
||||
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>,BuildType >,
|
||||
BuildType>::ret Type;
|
||||
};
|
||||
|
||||
|
@ -52,7 +52,7 @@
|
||||
* convenient macro to defined the return type of a cwise comparison to a scalar */
|
||||
#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
|
||||
CwiseBinaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType, \
|
||||
NestByValue<typename ExpressionType::ConstantReturnType> >
|
||||
typename ExpressionType::ConstantReturnType >
|
||||
|
||||
/** \class Cwise
|
||||
*
|
||||
|
@ -37,12 +37,6 @@ template<typename XprType> struct ei_shape_of
|
||||
// matrix. Unless we change the overall design, here is a workaround.
|
||||
// There is an example in unsuported/Eigen/src/AutoDiff/AutoDiffScalar.
|
||||
|
||||
template<typename XprType, int Shape = ei_shape_of<XprType>::ret>
|
||||
struct MakeNestByValue
|
||||
{
|
||||
typedef NestByValue<XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename XprType, int Shape = ei_shape_of<XprType>::ret>
|
||||
struct MakeCwiseUnaryOp
|
||||
{
|
||||
|
@ -248,7 +248,7 @@ template<typename Derived> class MatrixBase
|
||||
typedef CwiseUnaryView<ei_scalar_imag_op<Scalar>, Derived> NonConstImagReturnType;
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<Derived> > >,
|
||||
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<Derived> >,
|
||||
Transpose<Derived>
|
||||
>::ret AdjointReturnType;
|
||||
/** \internal the return type of MatrixBase::eigenvalues() */
|
||||
@ -445,11 +445,11 @@ template<typename Derived> class MatrixBase
|
||||
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,Transpose<DerivedB> >& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > >& other);
|
||||
Derived& lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<OtherDerived> >& other);
|
||||
template<typename DerivedA, typename DerivedB>
|
||||
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB>& other);
|
||||
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedA> >,DerivedB>& other);
|
||||
template<typename DerivedA, typename DerivedB>
|
||||
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > >& other);
|
||||
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedB> > >& other);
|
||||
#endif
|
||||
|
||||
RowXpr row(int i);
|
||||
@ -622,7 +622,6 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
inline const NestByValue<Derived> nestByValue() const;
|
||||
|
||||
|
||||
ConjugateReturnType conjugate() const;
|
||||
RealReturnType real() const;
|
||||
NonConstRealReturnType real();
|
||||
@ -694,11 +693,11 @@ template<typename Derived> class MatrixBase
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
|
||||
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
|
||||
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
|
||||
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
|
||||
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<int p> RealScalar lpNorm() const;
|
||||
@ -766,7 +765,7 @@ template<typename Derived> class MatrixBase
|
||||
ei_traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
|
||||
ei_traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
|
||||
typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>,
|
||||
NestByValue<StartMinusOne> > HNormalizedReturnType;
|
||||
StartMinusOne > HNormalizedReturnType;
|
||||
|
||||
const HNormalizedReturnType hnormalized() const;
|
||||
typedef Homogeneous<Derived,MatrixBase<Derived>::ColsAtCompileTime==1?Vertical:Horizontal> HomogeneousReturnType;
|
||||
|
@ -111,14 +111,6 @@ class ProductBase : public MatrixBase<Derived>
|
||||
template<typename Dest>
|
||||
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { derived().scaleAndAddTo(dst,alpha); }
|
||||
|
||||
PlainMatrixType eval() const
|
||||
{
|
||||
PlainMatrixType res(rows(), cols());
|
||||
res.setZero();
|
||||
derived().evalTo(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
EIGEN_DEPRECATED const Flagged<ProductBase, 0, EvalBeforeAssigningBit> lazy() const
|
||||
{ return *this; }
|
||||
|
||||
|
@ -186,7 +186,7 @@ template<typename Derived>
|
||||
inline const typename MatrixBase<Derived>::AdjointReturnType
|
||||
MatrixBase<Derived>::adjoint() const
|
||||
{
|
||||
return transpose().nestByValue();
|
||||
return transpose();
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
@ -326,31 +326,31 @@ lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,Transpose<Deriv
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived> Derived&
|
||||
MatrixBase<Derived>::
|
||||
lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > >& other)
|
||||
lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<OtherDerived> >& other)
|
||||
{
|
||||
ei_assert(ei_extract_data(other) != ei_extract_data(derived())
|
||||
&& "aliasing detected during tranposition, please use adjointInPlace()");
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > > >& >(other));
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<OtherDerived> > >& >(other));
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename DerivedA, typename DerivedB>
|
||||
Derived& MatrixBase<Derived>::
|
||||
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB>& other)
|
||||
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedA> >,DerivedB>& other)
|
||||
{
|
||||
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.lhs())
|
||||
&& "aliasing detected during tranposition, please evaluate your expression");
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB> >& >(other));
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedA> >,DerivedB> >& >(other));
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename DerivedA, typename DerivedB>
|
||||
Derived& MatrixBase<Derived>::
|
||||
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > >& other)
|
||||
lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedB> > >& other)
|
||||
{
|
||||
ei_assert(ei_extract_data(derived()) != ei_extract_data(other.rhs())
|
||||
&& "aliasing detected during tranposition, please evaluate your expression");
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > > >& >(other));
|
||||
return lazyAssign(static_cast<const MatrixBase<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<DerivedB> > > >& >(other));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -222,18 +222,18 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
|
||||
|
||||
/** \sa MatrixBase::adjoint() */
|
||||
inline TriangularView<NestByValue<typename MatrixType::AdjointReturnType>,TransposeMode> adjoint()
|
||||
{ return m_matrix.adjoint().nestByValue(); }
|
||||
inline TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint()
|
||||
{ return m_matrix.adjoint(); }
|
||||
/** \sa MatrixBase::adjoint() const */
|
||||
inline const TriangularView<NestByValue<typename MatrixType::AdjointReturnType>,TransposeMode> adjoint() const
|
||||
{ return m_matrix.adjoint().nestByValue(); }
|
||||
inline const TriangularView<typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
|
||||
{ return m_matrix.adjoint(); }
|
||||
|
||||
/** \sa MatrixBase::transpose() */
|
||||
inline TriangularView<NestByValue<Transpose<MatrixType> >,TransposeMode> transpose()
|
||||
{ return m_matrix.transpose().nestByValue(); }
|
||||
inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
|
||||
{ return m_matrix.transpose(); }
|
||||
/** \sa MatrixBase::transpose() const */
|
||||
inline const TriangularView<NestByValue<Transpose<MatrixType> >,TransposeMode> transpose() const
|
||||
{ return m_matrix.transpose().nestByValue(); }
|
||||
inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
|
||||
{ return m_matrix.transpose(); }
|
||||
|
||||
DenseMatrixType toDenseMatrix() const
|
||||
{
|
||||
|
@ -214,20 +214,6 @@ struct ei_blas_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
|
||||
{ return - Base::extractScalarFactor(x._expression()); }
|
||||
};
|
||||
|
||||
// pop NestByValue
|
||||
template<typename NestedXpr>
|
||||
struct ei_blas_traits<NestByValue<NestedXpr> >
|
||||
: ei_blas_traits<NestedXpr>
|
||||
{
|
||||
typedef typename NestedXpr::Scalar Scalar;
|
||||
typedef ei_blas_traits<NestedXpr> Base;
|
||||
typedef NestByValue<NestedXpr> XprType;
|
||||
typedef typename Base::ExtractType ExtractType;
|
||||
static inline ExtractType extract(const XprType& x) { return Base::extract(static_cast<const NestedXpr&>(x)); }
|
||||
static inline Scalar extractScalarFactor(const XprType& x)
|
||||
{ return Base::extractScalarFactor(static_cast<const NestedXpr&>(x)); }
|
||||
};
|
||||
|
||||
// pop/push transpose
|
||||
template<typename NestedXpr>
|
||||
struct ei_blas_traits<Transpose<NestedXpr> >
|
||||
|
@ -168,8 +168,35 @@ template<typename T> struct ei_plain_matrix_type_row_major
|
||||
> type;
|
||||
};
|
||||
|
||||
// we should be able to get rid of this one too
|
||||
template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
|
||||
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };
|
||||
|
||||
/**
|
||||
* The reference selector for template expressions. The idea is that we don't
|
||||
* need to use references for expressions since they are light weight proxy
|
||||
* objects which should generate no copying overhead.
|
||||
**/
|
||||
template <typename T>
|
||||
struct ei_ref_selector
|
||||
{
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
/**
|
||||
* Matrices on the other hand side should only be copied, when it is sure
|
||||
* we gain by copying (see arithmetic cost check and eval before nesting flag).
|
||||
* Note: This is an optimization measure that comprises potential (though little)
|
||||
* to create erroneous code. Any user, utilizing ei_nested outside of
|
||||
* Eigen needs to take care that no references to temporaries are
|
||||
* stored or that this potential danger is at least communicated
|
||||
* to the user.
|
||||
**/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct ei_ref_selector< Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
{
|
||||
typedef Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> MatrixType;
|
||||
typedef MatrixType const& type;
|
||||
};
|
||||
|
||||
/** \internal Determines how a given expression should be nested into another one.
|
||||
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
|
||||
@ -195,15 +222,12 @@ template<typename T, int n=1, typename PlainMatrixType = typename ei_eval<T>::ty
|
||||
CostEval = (n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost),
|
||||
CostNoEval = (n-1) * int(ei_traits<T>::CoeffReadCost)
|
||||
};
|
||||
|
||||
typedef typename ei_meta_if<
|
||||
ei_must_nest_by_value<T>::ret,
|
||||
T,
|
||||
typename ei_meta_if<
|
||||
(int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
|
||||
|| ( int(CostEval) <= int(CostNoEval) ),
|
||||
( int(ei_traits<T>::Flags) & EvalBeforeNestingBit ) ||
|
||||
( int(CostEval) <= int(CostNoEval) ),
|
||||
PlainMatrixType,
|
||||
const T&
|
||||
>::ret
|
||||
typename ei_ref_selector<T>::type
|
||||
>::ret type;
|
||||
};
|
||||
|
||||
@ -256,7 +280,7 @@ template<typename ExpressionType> struct HNormalizedReturnType {
|
||||
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
|
||||
ei_traits<ExpressionType>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne;
|
||||
typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<ExpressionType>::Scalar>,
|
||||
NestByValue<StartMinusOne> > Type;
|
||||
StartMinusOne > Type;
|
||||
};
|
||||
|
||||
template<typename XprType, typename CastType> struct ei_cast_return_type
|
||||
|
@ -58,10 +58,10 @@ template<typename _MatrixType> class HessenbergDecomposition
|
||||
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||
|
||||
typedef typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType DiagonalReturnType;
|
||||
typedef typename Diagonal<MatrixType,0>::RealReturnType DiagonalReturnType;
|
||||
|
||||
typedef typename NestByValue<Diagonal<
|
||||
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType SubDiagonalReturnType;
|
||||
typedef typename Diagonal<
|
||||
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >::RealReturnType SubDiagonalReturnType;
|
||||
|
||||
/** This constructor initializes a HessenbergDecomposition object for
|
||||
* further use with HessenbergDecomposition::compute()
|
||||
|
@ -61,15 +61,15 @@ template<typename _MatrixType> class Tridiagonalization
|
||||
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
||||
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType,
|
||||
typename Diagonal<MatrixType,0>::RealReturnType,
|
||||
Diagonal<MatrixType,0>
|
||||
>::ret DiagonalReturnType;
|
||||
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
typename NestByValue<Diagonal<
|
||||
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType,
|
||||
typename Diagonal<
|
||||
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >::RealReturnType,
|
||||
Diagonal<
|
||||
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 >
|
||||
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >
|
||||
>::ret SubDiagonalReturnType;
|
||||
|
||||
/** This constructor initializes a Tridiagonalization object for
|
||||
@ -144,7 +144,7 @@ template<typename MatrixType>
|
||||
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::diagonal(void) const
|
||||
{
|
||||
return m_matrix.diagonal().nestByValue();
|
||||
return m_matrix.diagonal();
|
||||
}
|
||||
|
||||
/** \returns an expression of the sub-diagonal vector */
|
||||
@ -153,8 +153,7 @@ const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
||||
Tridiagonalization<MatrixType>::subDiagonal(void) const
|
||||
{
|
||||
int n = m_matrix.rows();
|
||||
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
|
||||
.nestByValue().diagonal().nestByValue();
|
||||
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
|
||||
}
|
||||
|
||||
/** constructs and returns the tridiagonal matrix T.
|
||||
|
@ -175,7 +175,7 @@ MatrixBase<Derived>::hnormalized() const
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
||||
return StartMinusOne(derived(),0,0,
|
||||
ColsAtCompileTime==1?size()-1:1,
|
||||
ColsAtCompileTime==1?1:size()-1).nestByValue() / coeff(size()-1);
|
||||
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
|
||||
}
|
||||
|
||||
/** \geometry_module
|
||||
@ -192,18 +192,17 @@ VectorwiseOp<ExpressionType,Direction>::hnormalized() const
|
||||
{
|
||||
return HNormalized_Block(_expression(),0,0,
|
||||
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
|
||||
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).nestByValue()
|
||||
.cwise()/
|
||||
Replicate<NestByValue<HNormalized_Factors>,
|
||||
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwise()/
|
||||
Replicate<HNormalized_Factors,
|
||||
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
||||
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
|
||||
(HNormalized_Factors(_expression(),
|
||||
Direction==Vertical ? _expression().rows()-1:0,
|
||||
Direction==Horizontal ? _expression().cols()-1:0,
|
||||
Direction==Vertical ? 1 : _expression().rows(),
|
||||
Direction==Horizontal ? 1 : _expression().cols()).nestByValue(),
|
||||
Direction==Horizontal ? 1 : _expression().cols()),
|
||||
Direction==Vertical ? _expression().rows()-1 : 1,
|
||||
Direction==Horizontal ? _expression().cols()-1 : 1).nestByValue();
|
||||
Direction==Horizontal ? _expression().cols()-1 : 1);
|
||||
}
|
||||
|
||||
template<typename MatrixType,typename Lhs>
|
||||
|
@ -187,7 +187,7 @@ public:
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef typename ei_meta_if<int(Mode)==int(AffineCompact),
|
||||
MatrixType&,
|
||||
NestByValue<Block<MatrixType,Dim,HDim> > >::ret AffinePartNested;
|
||||
Block<MatrixType,Dim,HDim> >::ret AffinePartNested;
|
||||
/** type of a vector */
|
||||
typedef Matrix<Scalar,Dim,1> VectorType;
|
||||
/** type of a read/write reference to the translation part of the rotation */
|
||||
|
@ -69,7 +69,7 @@ template<typename VectorsType, typename CoeffsType> class HouseholderSequence
|
||||
|
||||
typedef HouseholderSequence<VectorsType,
|
||||
typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
NestByValue<typename ei_cleantype<typename CoeffsType::ConjugateReturnType>::type >,
|
||||
typename ei_cleantype<typename CoeffsType::ConjugateReturnType>::type,
|
||||
CoeffsType>::ret> ConjugateReturnType;
|
||||
|
||||
HouseholderSequence(const VectorsType& v, const CoeffsType& h, bool trans = false)
|
||||
|
@ -352,12 +352,12 @@ template<typename _MatrixType> class FullPivLU
|
||||
*
|
||||
* \sa MatrixBase::inverse()
|
||||
*/
|
||||
inline const ei_solve_retval<FullPivLU,NestByValue<typename MatrixType::IdentityReturnType> > inverse() const
|
||||
inline const ei_solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "LU is not initialized.");
|
||||
ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
|
||||
return ei_solve_retval<FullPivLU,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()).nestByValue());
|
||||
return ei_solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
|
||||
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
|
||||
}
|
||||
|
||||
inline int rows() const { return m_lu.rows(); }
|
||||
|
@ -143,11 +143,11 @@ template<typename _MatrixType> class PartialPivLU
|
||||
*
|
||||
* \sa MatrixBase::inverse(), LU::inverse()
|
||||
*/
|
||||
inline const ei_solve_retval<PartialPivLU,NestByValue<typename MatrixType::IdentityReturnType> > inverse() const
|
||||
inline const ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
||||
return ei_solve_retval<PartialPivLU,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()).nestByValue());
|
||||
return ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
|
||||
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
|
||||
}
|
||||
|
||||
/** \returns the determinant of the matrix of which
|
||||
|
@ -224,12 +224,12 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*/
|
||||
inline const
|
||||
ei_solve_retval<ColPivHouseholderQR, NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
ei_solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
|
||||
inverse() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
|
||||
return ei_solve_retval<ColPivHouseholderQR,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()).nestByValue());
|
||||
return ei_solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
|
||||
}
|
||||
|
||||
inline int rows() const { return m_qr.rows(); }
|
||||
|
@ -216,12 +216,12 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
||||
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
|
||||
* Use isInvertible() to first determine whether this matrix is invertible.
|
||||
*/ inline const
|
||||
ei_solve_retval<FullPivHouseholderQR, NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
ei_solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
|
||||
inverse() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
return ei_solve_retval<FullPivHouseholderQR,NestByValue<typename MatrixType::IdentityReturnType> >
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()).nestByValue());
|
||||
return ei_solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
|
||||
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
|
||||
}
|
||||
|
||||
inline int rows() const { return m_qr.rows(); }
|
||||
|
@ -57,6 +57,13 @@ struct ei_traits<DynamicSparseMatrix<_Scalar, _Flags> >
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options>
|
||||
struct ei_ref_selector< DynamicSparseMatrix<_Scalar, _Options> >
|
||||
{
|
||||
typedef DynamicSparseMatrix<_Scalar, _Options> MatrixType;
|
||||
typedef MatrixType const& type;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Flags>
|
||||
class DynamicSparseMatrix
|
||||
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags> >
|
||||
|
@ -52,7 +52,7 @@
|
||||
* convenient macro to defined the return type of a cwise comparison to a scalar */
|
||||
/*#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
|
||||
CwiseBinaryOp<OP<typename ei_traits<ExpressionType>::Scalar>, ExpressionType, \
|
||||
NestByValue<typename ExpressionType::ConstantReturnType> >*/
|
||||
typename ExpressionType::ConstantReturnType >*/
|
||||
|
||||
template<typename ExpressionType> class SparseCwise
|
||||
{
|
||||
|
@ -85,8 +85,7 @@ class SparseDiagonalProduct
|
||||
typedef ei_sparse_diagonal_product_inner_iterator_selector
|
||||
<_LhsNested,_RhsNested,SparseDiagonalProduct,LhsMode,RhsMode> InnerIterator;
|
||||
|
||||
template<typename _Lhs, typename _Rhs>
|
||||
EIGEN_STRONG_INLINE SparseDiagonalProduct(const _Lhs& lhs, const _Rhs& rhs)
|
||||
EIGEN_STRONG_INLINE SparseDiagonalProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
: m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
ei_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
|
||||
@ -155,16 +154,16 @@ class ei_sparse_diagonal_product_inner_iterator_selector
|
||||
: public SparseCwiseBinaryOp<
|
||||
ei_scalar_product_op<typename Rhs::Scalar>,
|
||||
SparseInnerVectorSet<Lhs,1>,
|
||||
NestByValue<Transpose<typename Rhs::DiagonalVectorType> > >::InnerIterator
|
||||
Transpose<typename Rhs::DiagonalVectorType> >::InnerIterator
|
||||
{
|
||||
typedef typename SparseCwiseBinaryOp<
|
||||
ei_scalar_product_op<typename Rhs::Scalar>,
|
||||
SparseInnerVectorSet<Lhs,1>,
|
||||
NestByValue<Transpose<typename Rhs::DiagonalVectorType> > >::InnerIterator Base;
|
||||
Transpose<typename Rhs::DiagonalVectorType> >::InnerIterator Base;
|
||||
public:
|
||||
inline ei_sparse_diagonal_product_inner_iterator_selector(
|
||||
const SparseDiagonalProductType& expr, int outer)
|
||||
: Base(expr.lhs().innerVector(outer) .cwise()* expr.rhs().diagonal().transpose().nestByValue(), 0)
|
||||
: Base(expr.lhs().innerVector(outer) .cwise()* expr.rhs().diagonal().transpose(), 0)
|
||||
{}
|
||||
};
|
||||
|
||||
|
@ -25,12 +25,6 @@
|
||||
#ifndef EIGEN_SPARSE_EXPRESSIONMAKER_H
|
||||
#define EIGEN_SPARSE_EXPRESSIONMAKER_H
|
||||
|
||||
template<typename XprType>
|
||||
struct MakeNestByValue<XprType,IsSparse>
|
||||
{
|
||||
typedef SparseNestByValue<XprType> Type;
|
||||
};
|
||||
|
||||
template<typename Func, typename XprType>
|
||||
struct MakeCwiseUnaryOp<Func,XprType,IsSparse>
|
||||
{
|
||||
|
@ -56,6 +56,13 @@ struct ei_traits<SparseMatrix<_Scalar, _Options> >
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options>
|
||||
struct ei_ref_selector<SparseMatrix<_Scalar, _Options> >
|
||||
{
|
||||
typedef SparseMatrix<_Scalar, _Options> MatrixType;
|
||||
typedef MatrixType const& type;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options>
|
||||
class SparseMatrix
|
||||
: public SparseMatrixBase<SparseMatrix<_Scalar, _Options> >
|
||||
|
@ -100,7 +100,7 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
|
||||
typedef SparseCwiseUnaryOp<ei_scalar_imag_op<Scalar>, Derived> ImagReturnType;
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
|
||||
SparseCwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, SparseNestByValue<Eigen::SparseTranspose<Derived> > >,
|
||||
SparseCwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::SparseTranspose<Derived> >,
|
||||
SparseTranspose<Derived>
|
||||
>::ret AdjointReturnType;
|
||||
|
||||
@ -356,7 +356,7 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
|
||||
SparseTranspose<Derived> transpose() { return derived(); }
|
||||
const SparseTranspose<Derived> transpose() const { return derived(); }
|
||||
// void transposeInPlace();
|
||||
const AdjointReturnType adjoint() const { return transpose().nestByValue(); }
|
||||
const AdjointReturnType adjoint() const { return transpose(); }
|
||||
|
||||
// sub-vector
|
||||
SparseInnerVectorSet<Derived,1> row(int i);
|
||||
@ -528,9 +528,6 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
|
||||
*/
|
||||
// inline int stride(void) const { return derived().stride(); }
|
||||
|
||||
inline const SparseNestByValue<Derived> nestByValue() const;
|
||||
|
||||
|
||||
ConjugateReturnType conjugate() const;
|
||||
const RealReturnType real() const;
|
||||
const ImagReturnType imag() const;
|
||||
@ -583,11 +580,11 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
|
||||
const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<typename ThenDerived>
|
||||
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
|
||||
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
|
||||
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
|
||||
|
||||
template<typename ElseDerived>
|
||||
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
|
||||
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
|
||||
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
|
||||
|
||||
template<int p> RealScalar lpNorm() const;
|
||||
|
@ -1,84 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSENESTBYVALUE_H
|
||||
#define EIGEN_SPARSENESTBYVALUE_H
|
||||
|
||||
/** \class SparseNestByValue
|
||||
*
|
||||
* \brief Expression which must be nested by value
|
||||
*
|
||||
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
|
||||
*
|
||||
* This class is the return type of MatrixBase::nestByValue()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa SparseMatrixBase::nestByValue(), class NestByValue
|
||||
*/
|
||||
template<typename ExpressionType>
|
||||
struct ei_traits<SparseNestByValue<ExpressionType> > : public ei_traits<ExpressionType>
|
||||
{};
|
||||
|
||||
template<typename ExpressionType> class SparseNestByValue
|
||||
: public SparseMatrixBase<SparseNestByValue<ExpressionType> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename ExpressionType::InnerIterator InnerIterator;
|
||||
|
||||
EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseNestByValue)
|
||||
|
||||
inline SparseNestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
EIGEN_STRONG_INLINE int rows() const { return m_expression.rows(); }
|
||||
EIGEN_STRONG_INLINE int cols() const { return m_expression.cols(); }
|
||||
|
||||
operator const ExpressionType&() const { return m_expression; }
|
||||
|
||||
protected:
|
||||
const ExpressionType m_expression;
|
||||
};
|
||||
|
||||
/** \returns an expression of the temporary version of *this.
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const SparseNestByValue<Derived>
|
||||
SparseMatrixBase<Derived>::nestByValue() const
|
||||
{
|
||||
return SparseNestByValue<Derived>(derived());
|
||||
}
|
||||
|
||||
// template<typename MatrixType>
|
||||
// class SparseNestByValue<MatrixType>::InnerIterator : public MatrixType::InnerIterator
|
||||
// {
|
||||
// typedef typename MatrixType::InnerIterator Base;
|
||||
// public:
|
||||
//
|
||||
// EIGEN_STRONG_INLINE InnerIterator(const SparseNestByValue& expr, int outer)
|
||||
// : Base(expr.m_expression, outer)
|
||||
// {}
|
||||
// };
|
||||
|
||||
#endif // EIGEN_SPARSENESTBYVALUE_H
|
@ -106,7 +106,6 @@ template<typename _Scalar, int _Flags = 0> class DynamicSparseMatrix;
|
||||
template<typename _Scalar, int _Flags = 0> class SparseVector;
|
||||
template<typename _Scalar, int _Flags = 0> class MappedSparseMatrix;
|
||||
|
||||
template<typename MatrixType> class SparseNestByValue;
|
||||
template<typename MatrixType> class SparseTranspose;
|
||||
template<typename MatrixType, int Size> class SparseInnerVectorSet;
|
||||
template<typename Derived> class SparseCwise;
|
||||
@ -147,6 +146,4 @@ template<typename T> class ei_eval<T,IsSparse>
|
||||
typedef SparseMatrix<_Scalar, _Flags> type;
|
||||
};
|
||||
|
||||
template<typename T> struct ei_must_nest_by_value<SparseNestByValue<T> > { enum { ret = true }; };
|
||||
|
||||
#endif // EIGEN_SPARSEUTIL_H
|
||||
|
@ -51,6 +51,13 @@ struct ei_traits<SparseVector<_Scalar, _Options> >
|
||||
};
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options>
|
||||
struct ei_ref_selector< SparseVector<_Scalar, _Options> >
|
||||
{
|
||||
typedef SparseVector<_Scalar, _Options> MatrixType;
|
||||
typedef MatrixType const& type;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options>
|
||||
class SparseVector
|
||||
: public SparseMatrixBase<SparseVector<_Scalar, _Options> >
|
||||
|
@ -26,12 +26,13 @@
|
||||
#ifndef EIGEN_BENCH_TIMER_H
|
||||
#define EIGEN_BENCH_TIMER_H
|
||||
|
||||
#ifndef WIN32
|
||||
#if defined(_WIN32) || defined(__CYGWIN__)
|
||||
#define NOMINMAX
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
#else
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
@ -53,7 +54,7 @@ public:
|
||||
|
||||
BenchTimer()
|
||||
{
|
||||
#ifdef WIN32
|
||||
#if defined(_WIN32) || defined(__CYGWIN__)
|
||||
LARGE_INTEGER freq;
|
||||
QueryPerformanceFrequency(&freq);
|
||||
m_frequency = (double)freq.QuadPart;
|
||||
@ -77,7 +78,7 @@ public:
|
||||
return m_best;
|
||||
}
|
||||
|
||||
#ifdef WIN32
|
||||
#if defined(_WIN32) || defined(__CYGWIN__)
|
||||
inline double getTime(void)
|
||||
#else
|
||||
static inline double getTime(void)
|
||||
@ -95,7 +96,7 @@ public:
|
||||
}
|
||||
|
||||
protected:
|
||||
#ifdef WIN32
|
||||
#if defined(_WIN32) || defined(__CYGWIN__)
|
||||
double m_frequency;
|
||||
#endif
|
||||
double m_best, m_start;
|
||||
|
@ -76,17 +76,17 @@ extern "C"
|
||||
using namespace Eigen;
|
||||
|
||||
template<typename T>
|
||||
Block<NestByValue<Map<Matrix<T,Dynamic,Dynamic> > >, Dynamic, Dynamic>
|
||||
Block<Map<Matrix<T,Dynamic,Dynamic> >, Dynamic, Dynamic>
|
||||
matrix(T* data, int rows, int cols, int stride)
|
||||
{
|
||||
return Map<Matrix<T,Dynamic,Dynamic> >(data, stride, cols).nestByValue().block(0,0,rows,cols);
|
||||
return Map<Matrix<T,Dynamic,Dynamic> >(data, stride, cols).block(0,0,rows,cols);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Block<NestByValue<Map<Matrix<T,Dynamic,Dynamic,RowMajor> > >, Dynamic, 1>
|
||||
Block<Map<Matrix<T,Dynamic,Dynamic,RowMajor> >, Dynamic, 1>
|
||||
vector(T* data, int size, int incr)
|
||||
{
|
||||
return Map<Matrix<T,Dynamic,Dynamic,RowMajor> >(data, size, incr).nestByValue().col(0);
|
||||
return Map<Matrix<T,Dynamic,Dynamic,RowMajor> >(data, size, incr).col(0);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -106,8 +106,8 @@ enum
|
||||
Conj = IsComplex
|
||||
};
|
||||
|
||||
typedef Block<NestByValue<Map<Matrix<Scalar,Dynamic,Dynamic> > >, Dynamic, Dynamic> MatrixType;
|
||||
typedef Block<NestByValue<Map<Matrix<Scalar,Dynamic,Dynamic, RowMajor> > >, Dynamic, 1> StridedVectorType;
|
||||
typedef Block<Map<Matrix<Scalar,Dynamic,Dynamic> >, Dynamic, Dynamic> MatrixType;
|
||||
typedef Block<Map<Matrix<Scalar,Dynamic,Dynamic, RowMajor> >, Dynamic, 1> StridedVectorType;
|
||||
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
|
||||
|
||||
#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
|
||||
|
@ -43,7 +43,7 @@ template<typename Scalar> void quaternion(void)
|
||||
if (ei_is_same_type<Scalar,float>::ret)
|
||||
largeEps = 1e-3f;
|
||||
|
||||
Scalar eps = ei_random<Scalar>() * 1e-2;
|
||||
Scalar eps = ei_random<Scalar>() * Scalar(1e-2);
|
||||
|
||||
Vector3 v0 = Vector3::Random(),
|
||||
v1 = Vector3::Random(),
|
||||
|
@ -212,33 +212,33 @@ class AutoDiffScalar
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >
|
||||
operator/(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >(
|
||||
typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >(
|
||||
m_value / other.value(),
|
||||
((m_derivatives * other.value()).nestByValue() - (m_value * other.derivatives()).nestByValue()).nestByValue()
|
||||
((m_derivatives * other.value()) - (m_value * other.derivatives()))
|
||||
* (Scalar(1)/(other.value()*other.value())));
|
||||
}
|
||||
|
||||
template<typename OtherDerType>
|
||||
inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >
|
||||
operator*(const AutoDiffScalar<OtherDerType>& other) const
|
||||
{
|
||||
ei_make_coherent(m_derivatives, other.derivatives());
|
||||
return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
|
||||
typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >(
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type,
|
||||
typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >(
|
||||
m_value * other.value(),
|
||||
(m_derivatives * other.value()).nestByValue() + (m_value * other.derivatives()).nestByValue());
|
||||
(m_derivatives * other.value()) + (m_value * other.derivatives()));
|
||||
}
|
||||
|
||||
inline AutoDiffScalar& operator*=(const Scalar& other)
|
||||
|
@ -196,17 +196,17 @@ class AutoDiffVector
|
||||
// inline const AutoDiffVector<
|
||||
// CwiseBinaryOp<ei_scalar_multiple_op<Scalar>, ValueType, OtherValueType>
|
||||
// CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
// NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >,
|
||||
// NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherJacobianType> > > >
|
||||
// CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>,
|
||||
// CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherJacobianType> > >
|
||||
// operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
|
||||
// {
|
||||
// return AutoDiffVector<
|
||||
// CwiseBinaryOp<ei_scalar_multiple_op<Scalar>, ValueType, OtherValueType>
|
||||
// CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
|
||||
// NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >,
|
||||
// NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherJacobianType> > > >(
|
||||
// CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>,
|
||||
// CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherJacobianType> > >(
|
||||
// m_values.cwise() * other.values(),
|
||||
// (m_jacobian * other.values()).nestByValue() + (m_values * other.jacobian()).nestByValue());
|
||||
// (m_jacobian * other.values()) + (m_values * other.jacobian()));
|
||||
// }
|
||||
|
||||
inline AutoDiffVector& operator*=(const Scalar& other)
|
||||
|
@ -2,6 +2,6 @@ ADD_SUBDIRECTORY(IterativeSolvers)
|
||||
ADD_SUBDIRECTORY(BVH)
|
||||
ADD_SUBDIRECTORY(AutoDiff)
|
||||
ADD_SUBDIRECTORY(MoreVectorization)
|
||||
ADD_SUBDIRECTORY(FFT)
|
||||
ADD_SUBDIRECTORY(Skyline)
|
||||
# ADD_SUBDIRECTORY(FFT)
|
||||
# ADD_SUBDIRECTORY(Skyline)
|
||||
ADD_SUBDIRECTORY(MatrixFunctions)
|
||||
|
@ -17,6 +17,7 @@ ei_add_test(BVH)
|
||||
ei_add_test(matrixExponential)
|
||||
ei_add_test(alignedvector3)
|
||||
ei_add_test(FFT)
|
||||
ei_add_test(nesting_profiling)
|
||||
|
||||
find_package(FFTW)
|
||||
if(FFTW_FOUND)
|
||||
|
199
unsupported/test/nesting_profiling.cpp
Normal file
199
unsupported/test/nesting_profiling.cpp
Normal file
@ -0,0 +1,199 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#define EIGEN_OLD_NESTED
|
||||
|
||||
#include "Eigen/Core"
|
||||
#include "Eigen/Array"
|
||||
#include "Eigen/Geometry"
|
||||
|
||||
#include "Bench/BenchTimer.h"
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
struct Transform2D
|
||||
{
|
||||
static void run(int num_runs)
|
||||
{
|
||||
const Matrix2d T = Matrix2d::Random();
|
||||
const Vector2d t = Vector2d::Random();
|
||||
const Matrix2Xd pts = Matrix2Xd::Random(2,100);
|
||||
|
||||
Matrix2Xd res;
|
||||
for (int i=0; i<num_runs; ++i)
|
||||
{
|
||||
run(res, T, pts, t);
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE static void run(Matrix2Xd& res, const Matrix2d& T, const Matrix2Xd& pts, const Vector2d& t)
|
||||
{
|
||||
res = T * pts + Replicate<Vector2d,1,100>(t);
|
||||
}
|
||||
};
|
||||
|
||||
struct ColwiseTransform2D
|
||||
{
|
||||
static void run(int num_runs)
|
||||
{
|
||||
const Matrix2d T = Matrix2d::Random();
|
||||
const Vector2d t = Vector2d::Random();
|
||||
const Matrix2Xd pts = Matrix2Xd::Random(2,100);
|
||||
|
||||
Matrix2Xd res;
|
||||
for (int i=0; i<num_runs; ++i)
|
||||
{
|
||||
run(res, T, pts, t);
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE static void run(Matrix2Xd& res, const Matrix2d& T, const Matrix2Xd& pts, const Vector2d& t)
|
||||
{
|
||||
res = T * pts + Replicate<Vector2d,1,100>(t);
|
||||
}
|
||||
};
|
||||
|
||||
struct LinearCombination
|
||||
{
|
||||
typedef Eigen::Matrix<double,2,4> Matrix2x4d;
|
||||
|
||||
static void run(int num_runs)
|
||||
{
|
||||
const Matrix2Xd pts = Matrix2Xd::Random(2,100);
|
||||
const Matrix2x4d coefs = Matrix2x4d::Random();
|
||||
|
||||
Matrix2x4d linear_combined = Matrix2x4d::Zero();
|
||||
for (int i=0; i<num_runs; ++i)
|
||||
{
|
||||
for (int r=0; r<coefs.rows(); ++r)
|
||||
{
|
||||
for (int c=0; c<pts.cols()-coefs.cols()+1; ++c)
|
||||
{
|
||||
run(linear_combined, pts, coefs, r, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE static void run(Matrix2x4d& res, const Matrix2Xd& pts, const Matrix2x4d& coefs, int r, int c)
|
||||
{
|
||||
res += pts.block(0,c,2,coefs.cols()).cwise() * Replicate<Matrix2x4d::RowXpr,2,1>(coefs.row(r));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename VectorType>
|
||||
struct VectorAddition
|
||||
{
|
||||
typedef VectorType ReturnType;
|
||||
EIGEN_DONT_INLINE static VectorType run(int)
|
||||
{
|
||||
VectorType a,b,c,d;
|
||||
return a+b+c+d;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
struct MatrixProduct
|
||||
{
|
||||
typedef MatrixType ReturnType;
|
||||
EIGEN_DONT_INLINE static MatrixType run(int num_runs)
|
||||
{
|
||||
MatrixType a,b;
|
||||
return a*b;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
struct MatrixScaling
|
||||
{
|
||||
typedef MatrixType ReturnType;
|
||||
EIGEN_DONT_INLINE static MatrixType run(int num_runs)
|
||||
{
|
||||
typename ei_traits<MatrixType>::Scalar s;
|
||||
MatrixType a,b;
|
||||
return s*a;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename TestFunction>
|
||||
EIGEN_DONT_INLINE void run(int num_runs)
|
||||
{
|
||||
for (int outer_runs=0; outer_runs<30; ++outer_runs)
|
||||
{
|
||||
//BenchTimer timer;
|
||||
//const double start = timer.getTime();
|
||||
{
|
||||
TestFunction::run(num_runs);
|
||||
}
|
||||
//const double stop = timer.getTime();
|
||||
//std::cout << (stop-start)*1000.0 << " ms" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TestFunction>
|
||||
EIGEN_DONT_INLINE void run_direct(int num_runs = 1)
|
||||
{
|
||||
for (int outer_runs=0; outer_runs<30; ++outer_runs)
|
||||
{
|
||||
// required to prevent that the compiler replaces the run-call by nop
|
||||
typename TestFunction::ReturnType return_type;
|
||||
for (int i=0; i<num_runs; ++i)
|
||||
{
|
||||
return_type += TestFunction::run(num_runs);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_nesting_profiling()
|
||||
{
|
||||
const int num_runs = 10000;
|
||||
|
||||
BenchTimer timer;
|
||||
const double start = timer.getTime();
|
||||
{
|
||||
// leads to better run-time
|
||||
run<Transform2D>(num_runs);
|
||||
run<ColwiseTransform2D>(num_runs);
|
||||
run<LinearCombination>(num_runs);
|
||||
}
|
||||
const double stop = timer.getTime();
|
||||
std::cout << (stop-start)*1000.0 << " ms" << std::endl;
|
||||
|
||||
// leads to identical assembly
|
||||
run_direct< MatrixProduct<Matrix2d> >();
|
||||
run_direct< MatrixProduct<Matrix3d> >();
|
||||
run_direct< MatrixProduct<Matrix4d> >();
|
||||
|
||||
// leads to identical assembly
|
||||
run_direct< MatrixScaling<Matrix2d> >();
|
||||
run_direct< MatrixScaling<Matrix3d> >();
|
||||
run_direct< MatrixScaling<Matrix4d> >();
|
||||
|
||||
// leads to better assembly
|
||||
run_direct< VectorAddition<Vector4f> >();
|
||||
run_direct< VectorAddition<Vector4d> >();
|
||||
run_direct< VectorAddition<Vector4i> >();
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user