mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-25 18:50:40 +08:00
new unsupported module by Jitse Niesen: matrix exponential
This commit is contained in:
parent
66f059b99d
commit
834eb5bfc8
@ -1,4 +1,4 @@
|
||||
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MoreVectorization AutoDiff AlignedVector3)
|
||||
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MatrixFunctions MoreVectorization AutoDiff AlignedVector3)
|
||||
|
||||
install(FILES
|
||||
${Eigen_HEADERS}
|
||||
|
54
unsupported/Eigen/MatrixFunctions
Normal file
54
unsupported/Eigen/MatrixFunctions
Normal file
@ -0,0 +1,54 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIX_FUNCTIONS
|
||||
#define EIGEN_MATRIX_FUNCTIONS
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Array>
|
||||
#include <Eigen/LU>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Unsupported_modules
|
||||
* \defgroup MatrixFunctions_Module Matrix functions module
|
||||
* \brief This module aims to provide various methods for the computation of
|
||||
* matrix functions. Currently, there is only support for the matrix
|
||||
* exponential.
|
||||
*
|
||||
* \code
|
||||
* #include <unsupported/Eigen/MatrixFunctions>
|
||||
* \endcode
|
||||
*/
|
||||
//@{
|
||||
|
||||
#include "src/MatrixFunctions/MatrixExponential.h"
|
||||
|
||||
//@}
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_MATRIX_FUNCTIONS
|
||||
|
6
unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
Normal file
6
unsupported/Eigen/src/MatrixFunctions/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_MatrixFunctions_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_MatrixFunctions_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/MatrixFunctions COMPONENT Devel
|
||||
)
|
155
unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
Normal file
155
unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
Normal file
@ -0,0 +1,155 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_MATRIX_EXPONENTIAL
|
||||
#define EIGEN_MATRIX_EXPONENTIAL
|
||||
|
||||
/** Compute the matrix exponential.
|
||||
*
|
||||
* \param M matrix whose exponential is to be computed.
|
||||
* \param result pointer to the matrix in which to store the result.
|
||||
*
|
||||
* The matrix exponential of \f$ M \f$ is defined by
|
||||
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
||||
* The matrix exponential can be used to solve linear ordinary
|
||||
* differential equations: the solution of \f$ y' = My \f$ with the
|
||||
* initial condition \f$ y(0) = y_0 \f$ is given by
|
||||
* \f$ y(t) = \exp(M) y_0 \f$.
|
||||
*
|
||||
* The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
||||
* matrices of size \f$ n \f$. The number 20 depends weakly on the
|
||||
* norm of the matrix.
|
||||
*
|
||||
* The matrix exponential is computed using the scaling-and-squaring
|
||||
* method combined with Padé approximation. The matrix is first
|
||||
* rescaled, then the exponential of the reduced matrix is computed
|
||||
* approximant, and then the rescaling is undone by repeated
|
||||
* squaring. The degree of the Padé approximant is chosen such
|
||||
* that the approximation error is less than the round-off
|
||||
* error. However, errors may accumulate during the squaring phase.
|
||||
*
|
||||
* Details of the algorithm can be found in: Nicholas J. Higham, "The
|
||||
* scaling and squaring method for the matrix exponential revisited,"
|
||||
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193,
|
||||
* 2005.
|
||||
*
|
||||
* \note Currently, \p M has to be a matrix of \c double .
|
||||
*/
|
||||
template <typename Derived>
|
||||
void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matrix_type<Derived>::type* result)
|
||||
{
|
||||
typedef typename ei_traits<Derived>::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
|
||||
|
||||
ei_assert(M.rows() == M.cols());
|
||||
EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)
|
||||
|
||||
PlainMatrixType num, den, U, V;
|
||||
PlainMatrixType Id = PlainMatrixType::Identity(M.rows(), M.cols());
|
||||
RealScalar l1norm = M.cwise().abs().colwise().sum().maxCoeff();
|
||||
int squarings = 0;
|
||||
|
||||
// Choose degree of Pade approximant, depending on norm of M
|
||||
if (l1norm < 1.495585217958292e-002) {
|
||||
|
||||
// Use (3,3)-Pade
|
||||
const Scalar b[] = {120., 60., 12., 1.};
|
||||
PlainMatrixType M2;
|
||||
M2 = (M * M).lazy();
|
||||
num = b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
V = b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 2.539398330063230e-001) {
|
||||
|
||||
// Use (5,5)-Pade
|
||||
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
|
||||
PlainMatrixType M2, M4;
|
||||
M2 = (M * M).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
num = b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
V = b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 9.504178996162932e-001) {
|
||||
|
||||
// Use (7,7)-Pade
|
||||
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
|
||||
PlainMatrixType M2, M4, M6;
|
||||
M2 = (M * M).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
M6 = (M4 * M2).lazy();
|
||||
num = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 2.097847961257068e+000) {
|
||||
|
||||
// Use (9,9)-Pade
|
||||
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||||
2162160., 110880., 3960., 90., 1.};
|
||||
PlainMatrixType M2, M4, M6, M8;
|
||||
M2 = (M * M).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
M6 = (M4 * M2).lazy();
|
||||
M8 = (M6 * M2).lazy();
|
||||
num = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else {
|
||||
|
||||
// Use (13,13)-Pade; scale matrix by power of 2 so that its norm
|
||||
// is small enough
|
||||
|
||||
const Scalar maxnorm = 5.371920351148152;
|
||||
const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
|
||||
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
|
||||
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
|
||||
|
||||
squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
|
||||
PlainMatrixType A, A2, A4, A6;
|
||||
A = M / pow(2, squarings);
|
||||
A2 = (A * A).lazy();
|
||||
A4 = (A2 * A2).lazy();
|
||||
A6 = (A4 * A2).lazy();
|
||||
num = b[13]*A6 + b[11]*A4 + b[9]*A2;
|
||||
V = (A6 * num).lazy();
|
||||
num = V + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*Id;
|
||||
U = (A * num).lazy();
|
||||
num = b[12]*A6 + b[10]*A4 + b[8]*A2;
|
||||
V = (A6 * num).lazy() + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*Id;
|
||||
}
|
||||
|
||||
num = U + V; // numerator of Pade approximant
|
||||
den = -U + V; // denominator of Pade approximant
|
||||
den.lu().solve(num, result);
|
||||
|
||||
// Undo scaling by repeated squaring
|
||||
for (int i=0; i<squarings; i++)
|
||||
*result *= *result;
|
||||
}
|
||||
|
||||
#endif // EIGEN_MATRIX_EXPONENTIAL
|
@ -17,4 +17,5 @@ endif(ADOLC_FOUND)
|
||||
|
||||
ei_add_test(autodiff)
|
||||
ei_add_test(BVH)
|
||||
ei_add_test(matrixExponential)
|
||||
ei_add_test(alignedvector3)
|
||||
|
95
unsupported/test/matrixExponential.cpp
Normal file
95
unsupported/test/matrixExponential.cpp
Normal file
@ -0,0 +1,95 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <Eigen/StdVector>
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
double binom(int n, int k)
|
||||
{
|
||||
double res = 1;
|
||||
for (int i=0; i<k; i++)
|
||||
res = res * (n-k+i+1) / (i+1);
|
||||
return res;
|
||||
}
|
||||
|
||||
void test2dRotation()
|
||||
{
|
||||
Matrix2d A, B, C;
|
||||
double angle;
|
||||
|
||||
for (int i=0; i<=20; i++)
|
||||
{
|
||||
angle = pow(10, i / 5. - 2);
|
||||
A << 0, angle, -angle, 0;
|
||||
B << cos(angle), sin(angle), -sin(angle), cos(angle);
|
||||
ei_matrix_exponential(A, &C);
|
||||
VERIFY(C.isApprox(B, 1e-14));
|
||||
}
|
||||
}
|
||||
|
||||
void testPascal()
|
||||
{
|
||||
for (int size=1; size<20; size++)
|
||||
{
|
||||
MatrixXd A(size,size), B(size,size), C(size,size);
|
||||
A.setZero();
|
||||
for (int i=0; i<size-1; i++)
|
||||
A(i+1,i) = i+1;
|
||||
B.setZero();
|
||||
for (int i=0; i<size; i++)
|
||||
for (int j=0; j<=i; j++)
|
||||
B(i,j) = binom(i,j);
|
||||
ei_matrix_exponential(A, &C);
|
||||
VERIFY(C.isApprox(B, 1e-14));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void randomTest(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
Inverse.h
|
||||
*/
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
MatrixType m1(rows, cols), m2(rows, cols), m3(rows, cols),
|
||||
identity = MatrixType::Identity(rows, rows);
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
m1 = MatrixType::Random(rows, cols);
|
||||
ei_matrix_exponential(m1, &m2);
|
||||
ei_matrix_exponential(-m1, &m3);
|
||||
VERIFY(identity.isApprox(m2 * m3, 1e-13));
|
||||
}
|
||||
}
|
||||
|
||||
void test_matrixExponential()
|
||||
{
|
||||
CALL_SUBTEST(test2dRotation());
|
||||
CALL_SUBTEST(testPascal());
|
||||
CALL_SUBTEST(randomTest(Matrix2d()));
|
||||
CALL_SUBTEST(randomTest(Matrix3d()));
|
||||
CALL_SUBTEST(randomTest(Matrix4d()));
|
||||
CALL_SUBTEST(randomTest(MatrixXd(8,8)));
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user