mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
split and add unit tests for symm and syrk,
the .rank*update() functions now returns a reference to *this
This commit is contained in:
parent
b67abe22b3
commit
82c5438c95
@ -120,23 +120,25 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
|
||||
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
|
||||
* \f$ this = this + \alpha ( u v^* + v u^*) \f$
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* The vectors \a u and \c v \b must be column vectors, however they can be
|
||||
* a adjoint expression without any overhead. Only the meaningful triangular
|
||||
* part of the matrix is updated, the rest is left unchanged.
|
||||
*/
|
||||
template<typename DerivedU, typename DerivedV>
|
||||
void rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
|
||||
SelfAdjointView& rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
|
||||
|
||||
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
||||
* \f$ this = this + \alpha ( u u^* ) \f$
|
||||
* where \a u is a vector or matrix.
|
||||
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
||||
* call this function with u.adjoint().
|
||||
*/
|
||||
template<typename DerivedU>
|
||||
void rankKupdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
|
||||
SelfAdjointView& rankKupdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
|
||||
|
||||
/////////// Cholesky module ///////////
|
||||
|
||||
|
@ -126,7 +126,7 @@ struct ei_selfadjoint_product<Scalar,MatStorageOrder, ColMajor, AAT, UpLo>
|
||||
|
||||
template<typename MatrixType, unsigned int UpLo>
|
||||
template<typename DerivedU>
|
||||
void SelfAdjointView<MatrixType,UpLo>
|
||||
SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
|
||||
::rankKupdate(const MatrixBase<DerivedU>& u, Scalar alpha)
|
||||
{
|
||||
typedef ei_blas_traits<DerivedU> UBlasTraits;
|
||||
@ -144,6 +144,8 @@ void SelfAdjointView<MatrixType,UpLo>
|
||||
!UBlasTraits::NeedToConjugate, UpLo>
|
||||
::run(_expression().cols(), actualU.cols(), &actualU.coeff(0,0), actualU.stride(),
|
||||
const_cast<Scalar*>(_expression().data()), _expression().stride(), actualAlpha);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
@ -69,7 +69,7 @@ template<bool Cond, typename T> struct ei_conj_expr_if
|
||||
|
||||
template<typename MatrixType, unsigned int UpLo>
|
||||
template<typename DerivedU, typename DerivedV>
|
||||
void SelfAdjointView<MatrixType,UpLo>
|
||||
SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
|
||||
::rank2update(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha)
|
||||
{
|
||||
typedef ei_blas_traits<DerivedU> UBlasTraits;
|
||||
@ -91,6 +91,8 @@ void SelfAdjointView<MatrixType,UpLo>
|
||||
typename ei_conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::ret,
|
||||
(IsRowMajor ? (UpLo==UpperTriangular ? LowerTriangular : UpperTriangular) : UpLo)>
|
||||
::run(const_cast<Scalar*>(_expression().data()),_expression().stride(),actualU,actualV,actualAlpha);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SELFADJOINTRANK2UPTADE_H
|
||||
|
@ -97,8 +97,10 @@ ei_add_test(cwiseop)
|
||||
ei_add_test(redux)
|
||||
ei_add_test(product_small)
|
||||
ei_add_test(product_large ${EI_OFLAG})
|
||||
ei_add_test(product_selfadjoint)
|
||||
ei_add_test(product_extra)
|
||||
ei_add_test(product_extra ${EI_OFLAG})
|
||||
ei_add_test(product_selfadjoint ${EI_OFLAG})
|
||||
ei_add_test(product_symm ${EI_OFLAG})
|
||||
ei_add_test(product_syrk ${EI_OFLAG})
|
||||
ei_add_test(diagonalmatrices)
|
||||
ei_add_test(adjoint)
|
||||
ei_add_test(submatrices)
|
||||
|
@ -94,65 +94,6 @@ template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void symm(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
||||
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols);
|
||||
|
||||
m1 = (m1+m1.adjoint()).eval();
|
||||
|
||||
Rhs1 rhs1 = Rhs1::Random(cols, ei_random<int>(1,320)), rhs12, rhs13;
|
||||
Rhs2 rhs2 = Rhs2::Random(ei_random<int>(1,320), rows), rhs22, rhs23;
|
||||
Rhs3 rhs3 = Rhs3::Random(cols, ei_random<int>(1,320)), rhs32, rhs33;
|
||||
|
||||
Scalar s1 = ei_random<Scalar>(),
|
||||
s2 = ei_random<Scalar>();
|
||||
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs1),
|
||||
rhs13 = (s1*m1) * (s2*rhs1));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<UpperTriangular>() * (s2*rhs1),
|
||||
rhs13 = (s1*m1) * (s2*rhs1));
|
||||
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1) * (s2*rhs2.adjoint()));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView<UpperTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1) * (s2*rhs2.adjoint()));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1.adjoint()) * (s2*rhs2.adjoint()));
|
||||
|
||||
// test row major = <...>
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs32 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs3),
|
||||
rhs33 = (s1*m1) * (s2 * rhs3));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs32 = (s1*m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs3).conjugate(),
|
||||
rhs33 = (s1*m1.adjoint()) * (s2*rhs3).conjugate());
|
||||
|
||||
// test matrix * selfadjoint
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (rhs2) * (m2).template selfadjointView<LowerTriangular>(),
|
||||
rhs23 = (rhs2) * (m1));
|
||||
VERIFY_IS_APPROX(rhs22 = (s2*rhs2) * (s1*m2).template selfadjointView<LowerTriangular>(),
|
||||
rhs23 = (s2*rhs2) * (s1*m1));
|
||||
}
|
||||
void test_product_selfadjoint()
|
||||
{
|
||||
for(int i = 0; i < g_repeat ; i++) {
|
||||
@ -165,13 +106,4 @@ void test_product_selfadjoint()
|
||||
CALL_SUBTEST( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(17,17)) );
|
||||
CALL_SUBTEST( product_selfadjoint(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(19, 19)) );
|
||||
}
|
||||
|
||||
for(int i = 0; i < g_repeat ; i++)
|
||||
{
|
||||
int s;
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( symm(MatrixXf(s, s)) );
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( symm(MatrixXcd(s, s)) );
|
||||
}
|
||||
}
|
||||
|
96
test/product_symm.cpp
Normal file
96
test/product_symm.cpp
Normal file
@ -0,0 +1,96 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void symm(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
||||
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols);
|
||||
|
||||
m1 = (m1+m1.adjoint()).eval();
|
||||
|
||||
Rhs1 rhs1 = Rhs1::Random(cols, ei_random<int>(1,320)), rhs12, rhs13;
|
||||
Rhs2 rhs2 = Rhs2::Random(ei_random<int>(1,320), rows), rhs22, rhs23;
|
||||
Rhs3 rhs3 = Rhs3::Random(cols, ei_random<int>(1,320)), rhs32, rhs33;
|
||||
|
||||
Scalar s1 = ei_random<Scalar>(),
|
||||
s2 = ei_random<Scalar>();
|
||||
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs1),
|
||||
rhs13 = (s1*m1) * (s2*rhs1));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<UpperTriangular>() * (s2*rhs1),
|
||||
rhs13 = (s1*m1) * (s2*rhs1));
|
||||
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1) * (s2*rhs2.adjoint()));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView<UpperTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1) * (s2*rhs2.adjoint()));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (s1*m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs2.adjoint()),
|
||||
rhs23 = (s1*m1.adjoint()) * (s2*rhs2.adjoint()));
|
||||
|
||||
// test row major = <...>
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs32 = (s1*m2).template selfadjointView<LowerTriangular>() * (s2*rhs3),
|
||||
rhs33 = (s1*m1) * (s2 * rhs3));
|
||||
|
||||
m2 = m1.template triangularView<UpperTriangular>();
|
||||
VERIFY_IS_APPROX(rhs32 = (s1*m2.adjoint()).template selfadjointView<LowerTriangular>() * (s2*rhs3).conjugate(),
|
||||
rhs33 = (s1*m1.adjoint()) * (s2*rhs3).conjugate());
|
||||
|
||||
// test matrix * selfadjoint
|
||||
m2 = m1.template triangularView<LowerTriangular>();
|
||||
VERIFY_IS_APPROX(rhs22 = (rhs2) * (m2).template selfadjointView<LowerTriangular>(),
|
||||
rhs23 = (rhs2) * (m1));
|
||||
VERIFY_IS_APPROX(rhs22 = (s2*rhs2) * (s1*m2).template selfadjointView<LowerTriangular>(),
|
||||
rhs23 = (s2*rhs2) * (s1*m1));
|
||||
}
|
||||
void test_product_symm()
|
||||
{
|
||||
for(int i = 0; i < g_repeat ; i++)
|
||||
{
|
||||
int s;
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( symm(MatrixXf(s, s)) );
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( symm(MatrixXcd(s, s)) );
|
||||
}
|
||||
}
|
83
test/product_syrk.cpp
Normal file
83
test/product_syrk.cpp
Normal file
@ -0,0 +1,83 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void syrk(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
||||
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic,RowMajor> Rhs3;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols);
|
||||
|
||||
Rhs1 rhs1 = Rhs1::Random(ei_random<int>(1,320), cols);
|
||||
Rhs2 rhs2 = Rhs2::Random(rows, ei_random<int>(1,320));
|
||||
Rhs3 rhs3 = Rhs3::Random(ei_random<int>(1,320), rows);
|
||||
|
||||
Scalar s1 = ei_random<Scalar>(),
|
||||
s2 = ei_random<Scalar>();
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX((m2.template selfadjointView<LowerTriangular>().rankKupdate(rhs2,s1)._expression()),
|
||||
((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<LowerTriangular>().toDense()));
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX(m2.template selfadjointView<UpperTriangular>().rankKupdate(rhs2,s1)._expression(),
|
||||
(s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<UpperTriangular>().toDense());
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX(m2.template selfadjointView<LowerTriangular>().rankKupdate(rhs1.adjoint(),s1)._expression(),
|
||||
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<LowerTriangular>().toDense());
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX(m2.template selfadjointView<UpperTriangular>().rankKupdate(rhs1.adjoint(),s1)._expression(),
|
||||
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<UpperTriangular>().toDense());
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX(m2.template selfadjointView<LowerTriangular>().rankKupdate(rhs3.adjoint(),s1)._expression(),
|
||||
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<LowerTriangular>().toDense());
|
||||
|
||||
m2.setZero();
|
||||
VERIFY_IS_APPROX(m2.template selfadjointView<UpperTriangular>().rankKupdate(rhs3.adjoint(),s1)._expression(),
|
||||
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<UpperTriangular>().toDense());
|
||||
}
|
||||
|
||||
void test_product_syrk()
|
||||
{
|
||||
for(int i = 0; i < g_repeat ; i++)
|
||||
{
|
||||
int s;
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( syrk(MatrixXf(s, s)) );
|
||||
s = ei_random<int>(10,320);
|
||||
CALL_SUBTEST( syrk(MatrixXcd(s, s)) );
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user