* refactoring of Product:

* use ProductReturnType<>::Type to get the correct Product xpr type
  * Product is no longer instanciated for xpr types which are evaluated
  * vectorization of "a.transpose() * b" for the normal product (small and fixed-size matrix)
  * some cleanning
* removed ArrayBase
This commit is contained in:
Gael Guennebaud 2008-06-19 17:33:57 +00:00
parent 5dbfed1902
commit 82c3cea1d5
12 changed files with 359 additions and 247 deletions

View File

@ -5,7 +5,6 @@
namespace Eigen {
#include "src/Array/ArrayBase.h"
#include "src/Array/CwiseOperators.h"
#include "src/Array/Functors.h"
#include "src/Array/AllAndAny.h"

View File

@ -26,48 +26,57 @@
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
template<typename Lhs, typename Rhs>
struct ei_traits<Product<Lhs, Rhs, DiagonalProduct> >
template<typename LhsNested, typename RhsNested>
struct ei_traits<Product<LhsNested, RhsNested, DiagonalProduct> >
{
typedef typename Lhs::Scalar Scalar;
typedef typename ei_nested<Lhs>::type LhsNested;
typedef typename ei_nested<Rhs>::type RhsNested;
typedef typename ei_unref<LhsNested>::type _LhsNested;
typedef typename ei_unref<RhsNested>::type _RhsNested;
// clean the nested types:
typedef typename ei_unconst<typename ei_unref<LhsNested>::type>::type _LhsNested;
typedef typename ei_unconst<typename ei_unref<RhsNested>::type>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
enum {
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Rhs::MaxColsAtCompileTime,
_RhsPacketAccess = (RhsFlags & RowMajorBit) && (RhsFlags & PacketAccessBit)
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
LhsIsDiagonal = (_LhsNested::Flags&Diagonal)==Diagonal,
RhsIsDiagonal = (_RhsNested::Flags&Diagonal)==Diagonal,
CanVectorizeRhs = (!RhsIsDiagonal) && (RhsFlags & RowMajorBit) && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LhsPacketAccess = (!(LhsFlags & RowMajorBit)) && (LhsFlags & PacketAccessBit)
CanVectorizeLhs = (!LhsIsDiagonal) && (!(LhsFlags & RowMajorBit)) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LostBits = ~(((RhsFlags & RowMajorBit) && (!_LhsPacketAccess) ? 0 : RowMajorBit)
| ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit)),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & _LostBits)
| (_LhsPacketAccess || _RhsPacketAccess ? PacketAccessBit : 0),
RemovedBits = ~(((RhsFlags & RowMajorBit) && (!CanVectorizeLhs) ? 0 : RowMajorBit)
| ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit))
| LinearAccessBit,
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
| (CanVectorizeLhs || CanVectorizeRhs ? PacketAccessBit : 0),
CoeffReadCost = NumTraits<Scalar>::MulCost + _LhsNested::CoeffReadCost + _RhsNested::CoeffReadCost
};
};
template<typename Lhs, typename Rhs> class Product<Lhs, Rhs, DiagonalProduct> : ei_no_assignment_operator,
public MatrixBase<Product<Lhs, Rhs, DiagonalProduct> >
template<typename LhsNested, typename RhsNested> class Product<LhsNested, RhsNested, DiagonalProduct> : ei_no_assignment_operator,
public MatrixBase<Product<LhsNested, RhsNested, DiagonalProduct> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename ei_traits<Product>::LhsNested LhsNested;
typedef typename ei_traits<Product>::RhsNested RhsNested;
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
enum {
PacketSize = ei_packet_traits<Scalar>::size
RhsIsDiagonal = (_RhsNested::Flags&Diagonal)==Diagonal
};
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
template<typename Lhs, typename Rhs>
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
@ -81,14 +90,14 @@ template<typename Lhs, typename Rhs> class Product<Lhs, Rhs, DiagonalProduct> :
const Scalar _coeff(int row, int col) const
{
int unique = ((Rhs::Flags&Diagonal)==Diagonal) ? col : row;
const int unique = RhsIsDiagonal ? col : row;
return m_lhs.coeff(row, unique) * m_rhs.coeff(unique, col);
}
template<int LoadMode>
const PacketScalar _packet(int row, int col) const
{
if ((Rhs::Flags&Diagonal)==Diagonal)
if (RhsIsDiagonal)
{
ei_assert((_LhsNested::Flags&RowMajorBit)==0);
return ei_pmul(m_lhs.template packet<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));

View File

@ -49,7 +49,7 @@
*
* \nosubgrouping
*/
template<typename Derived> class MatrixBase : public ArrayBase<Derived>
template<typename Derived> class MatrixBase
{
struct CommaInitializer;
@ -168,16 +168,6 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
};
/** Represents a product scalar-matrix */
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> ScalarMultipleReturnType;
/** */
template<typename OtherDerived>
struct ProductReturnType
{
typedef typename ei_meta_if<
(Derived::Flags & OtherDerived::Flags & ArrayBit),
CwiseBinaryOp<ei_scalar_product_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>,
Product<Derived,OtherDerived>
>::ret Type;
};
/** the return type of MatrixBase::conjugate() */
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Derived>,
@ -274,7 +264,7 @@ template<typename Derived> class MatrixBase : public ArrayBase<Derived>
template<typename OtherDerived>
const typename ProductReturnType<OtherDerived>::Type
const typename ProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>

View File

@ -26,123 +26,69 @@
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
template<int Index, int Size, typename Lhs, typename Rhs>
struct ei_product_impl
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
ei_product_impl<Index-1, Size, Lhs, Rhs>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
}
/***************************
*** Forward declarations ***
***************************/
enum {
ColMajorProduct,
RowMajorProduct
};
template<int Size, typename Lhs, typename Rhs>
struct ei_product_impl<0, Size, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<int VectorizationMode, int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl;
template<typename Lhs, typename Rhs>
struct ei_product_impl<Dynamic, Dynamic, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar& res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(int i = 1; i < lhs.cols(); i++)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
template<int StorageOrder, int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl;
// prevent buggy user code from causing an infinite recursion
template<int Index, typename Lhs, typename Rhs>
struct ei_product_impl<Index, 0, Lhs, Rhs>
{
inline static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
template<typename T> class ei_product_eval_to_column_major;
//----------
template<bool RowMajor, int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl;
template<int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<true, Index, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_packet_product_impl<true, Index-1, Size, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<Aligned>(Index, col), res);
}
};
template<int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<false, Index, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_packet_product_impl<false, Index-1, Size, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(lhs.template packet<Aligned>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
}
};
template<int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<true, 0, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<Aligned>(0, col));
}
};
template<int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<false, 0, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(lhs.template packet<Aligned>(row, 0), ei_pset1(rhs.coeff(0, col)));
}
};
template<bool RowMajor, int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<RowMajor, Index, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<Aligned>(0, col));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(ei_pset1(lhs.coeff(row, i)), rhs.template packet<Aligned>(i, col), res);
}
};
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_impl<false, Index, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
res = ei_pmul(lhs.template packet<Aligned>(row, 0), ei_pset1(rhs.coeff(0, col)));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(lhs.template packet<Aligned>(row, i), ei_pset1(rhs.coeff(i, col)), res);
}
};
/** \class Product
/** \class ProductReturnType
*
* \brief Expression of the product of two matrices
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param EvalMode internal use only
* \param ProductMode the type of the product (determined automatically by ei_product_mode)
*
* This class represents an expression of the product of two matrices.
* It is the return type of the operator* between matrices, and most of the time
* this is the only way it is used.
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product or DiagonalProduct should never be
* used directly.
*
* \sa class Product, class DiagonalProduct, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs> struct ei_product_eval_mode
template<typename Lhs, typename Rhs, int ProductMode>
struct ProductReturnType
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef Product<typename ei_unconst<LhsNested>::type,
typename ei_unconst<RhsNested>::type, ProductMode> Type;
};
// cache friendly specialization
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime,
typename ei_product_eval_to_column_major<Rhs>::type
>::type RhsNested;
typedef Product<typename ei_unconst<LhsNested>::type,
typename ei_unconst<RhsNested>::type, CacheFriendlyProduct> Type;
};
/* Helper class to determine the type of the product, can be either:
* - NormalProduct
* - CacheFriendlyProduct
* - NormalProduct
*/
template<typename Lhs, typename Rhs> struct ei_product_mode
{
enum{ value = ((Rhs::Flags&Diagonal)==Diagonal) || ((Lhs::Flags&Diagonal)==Diagonal)
? DiagonalProduct
@ -152,100 +98,103 @@ template<typename Lhs, typename Rhs> struct ei_product_eval_mode
? CacheFriendlyProduct : NormalProduct };
};
template<typename T> class ei_product_eval_to_column_major
/** \class Product
*
* \brief Expression of the product of two matrices
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two matrices.
* It is the return type of the operator* between matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* Product should be used direclty. To determine the result type of a function
* which involve a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename LhsNested, typename RhsNested, int ProductMode>
struct ei_traits<Product<LhsNested, RhsNested, ProductMode> >
{
typedef typename ei_traits<T>::Scalar _Scalar;
enum {
_Rows = ei_traits<T>::RowsAtCompileTime,
_Cols = ei_traits<T>::ColsAtCompileTime,
_MaxRows = ei_traits<T>::MaxRowsAtCompileTime,
_MaxCols = ei_traits<T>::MaxColsAtCompileTime,
_Flags = ei_traits<T>::Flags
};
public:
typedef Matrix<_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
ei_corrected_matrix_flags<
_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
_Flags
>::ret & ~RowMajorBit
> type;
};
// as ei_nested, but evaluate to a column-major matrix if an evaluation is required
template<typename T, int n=1> struct ei_product_nested_rhs
{
typedef typename ei_meta_if<
ei_must_nest_by_value<T>::ret,
T,
typename ei_meta_if<
((ei_traits<T>::Flags & EvalBeforeNestingBit)
|| (n+1) * (NumTraits<typename ei_traits<T>::Scalar>::ReadCost) < (n-1) * T::CoeffReadCost),
typename ei_product_eval_to_column_major<T>::type,
const T&
>::ret
>::ret type;
};
template<typename Lhs, typename Rhs, int EvalMode>
struct ei_traits<Product<Lhs, Rhs, EvalMode> >
{
typedef typename Lhs::Scalar Scalar;
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_meta_if<EvalMode==CacheFriendlyProduct,
typename ei_product_nested_rhs<Rhs,Lhs::RowsAtCompileTime>::type,
typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
// clean the nested types:
typedef typename ei_unconst<typename ei_unref<LhsNested>::type>::type _LhsNested;
typedef typename ei_unconst<typename ei_unref<RhsNested>::type>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Rhs::MaxColsAtCompileTime,
// the vectorization flags are only used by the normal product,
// the other one is always vectorized !
_RhsPacketAccess = (RhsFlags & RowMajorBit) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LhsPacketAccess = (!(LhsFlags & RowMajorBit)) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_PacketAccess = (_LhsPacketAccess || _RhsPacketAccess) ? 1 : 0,
_RowMajor = (RhsFlags & RowMajorBit)
&& (EvalMode==(int)CacheFriendlyProduct ? (int)LhsFlags & RowMajorBit : (!_LhsPacketAccess)),
_LostBits = ~((_RowMajor ? 0 : RowMajorBit)
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
CanVectorizeInner = LhsRowMajor && (!RhsRowMajor) && (LhsFlags & PacketAccessBit) && (RhsFlags & PacketAccessBit)
&& (InnerSize!=Dynamic) && (InnerSize % ei_packet_traits<Scalar>::size == 0),
EvalToRowMajor = (RhsFlags & RowMajorBit)
&& (ProductMode==(int)CacheFriendlyProduct ? (int)LhsFlags & RowMajorBit : (!CanVectorizeLhs)),
RemovedBits = ~((EvalToRowMajor ? 0 : RowMajorBit)
| ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit)
| LinearAccessBit),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & _LostBits)
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
| EvalBeforeAssigningBit
| EvalBeforeNestingBit
| (_PacketAccess ? PacketAccessBit : 0),
CoeffReadCost
= Lhs::ColsAtCompileTime == Dynamic
? Dynamic
: Lhs::ColsAtCompileTime
* (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (Lhs::ColsAtCompileTime - 1) * NumTraits<Scalar>::AddCost
| (CanVectorizeLhs || CanVectorizeRhs ? PacketAccessBit : 0),
CoeffReadCost = InnerSize == Dynamic ? Dynamic
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost
};
};
template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignment_operator,
public MatrixBase<Product<Lhs, Rhs, EvalMode> >
template<typename LhsNested, typename RhsNested, int ProductMode> class Product : ei_no_assignment_operator,
public MatrixBase<Product<LhsNested, RhsNested, ProductMode> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename ei_traits<Product>::LhsNested LhsNested;
typedef typename ei_traits<Product>::RhsNested RhsNested;
private:
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
enum {
PacketSize = ei_packet_traits<Scalar>::size
PacketSize = ei_packet_traits<Scalar>::size,
InnerSize = ei_traits<Product>::InnerSize,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = ei_traits<Product>::CanVectorizeInner && Unroll
};
typedef ei_product_coeff_impl<CanVectorizeInner ? InnerVectorization : NoVectorization,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested> ScalarCoeffImpl;
typedef ei_product_packet_impl<Flags&RowMajorBit ? RowMajorProduct : ColMajorProduct,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, PacketScalar> PacketCoeffImpl;
public:
template<typename Lhs, typename Rhs>
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
@ -268,23 +217,15 @@ template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignm
const Scalar _coeff(int row, int col) const
{
Scalar res;
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
ei_product_impl<unroll ? Lhs::ColsAtCompileTime-1 : Dynamic,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested>
::run(row, col, m_lhs, m_rhs, res);
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<int LoadMode>
const PacketScalar _packet(int row, int col) const
{
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
PacketScalar res;
ei_packet_product_impl<Flags&RowMajorBit ? true : false, Lhs::ColsAtCompileTime-1,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested, PacketScalar>
::run(row, col, m_lhs, m_rhs, res);
PacketCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
@ -302,11 +243,11 @@ template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignm
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename MatrixBase<Derived>::template ProductReturnType<OtherDerived>::Type
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
assert( (Derived::Flags&ArrayBit) == (OtherDerived::Flags&ArrayBit) );
return typename ProductReturnType<OtherDerived>::Type(derived(), other.derived());
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
/** replaces \c *this by \c *this * \a other.
@ -321,6 +262,157 @@ MatrixBase<Derived>::operator*=(const MatrixBase<OtherDerived> &other)
return *this = *this * other;
}
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, Index, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
ei_product_coeff_impl<NoVectorization, Index-1, Lhs, Rhs>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, 0, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, Dynamic, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar& res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(int i = 1; i < lhs.cols(); i++)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, -1, Lhs, Rhs>
{
inline static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_impl
{
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
ei_product_coeff_vectorized_impl<Index-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
pres = ei_padd(pres, ei_pmul( lhs.template packet<Aligned>(row, Index) , rhs.template packet<Aligned>(Index, col) ));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_impl<0, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
pres = ei_pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl<InnerVectorization, Index, Lhs, Rhs>
{
typedef typename Lhs::PacketScalar PacketScalar;
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
PacketScalar pres;
ei_product_coeff_vectorized_impl<Index+1-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
ei_product_coeff_impl<NoVectorization,Index,Lhs,Rhs>::run(row, col, lhs, rhs, res);
res = ei_predux(pres);
}
};
/*******************
*** Packet path ***
*******************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<RowMajorProduct, Index, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<RowMajorProduct, Index-1, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<Aligned>(Index, col), res);
}
};
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<ColMajorProduct, Index, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<ColMajorProduct, Index-1, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(lhs.template packet<Aligned>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<RowMajorProduct, 0, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<Aligned>(0, col));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<ColMajorProduct, 0, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(lhs.template packet<Aligned>(row, 0), ei_pset1(rhs.coeff(0, col)));
}
};
template<int StorageOrder, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<StorageOrder, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<Aligned>(0, col));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(ei_pset1(lhs.coeff(row, i)), rhs.template packet<Aligned>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_packet_impl<ColMajorProduct, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
res = ei_pmul(lhs.template packet<Aligned>(row, 0), ei_pset1(rhs.coeff(0, col)));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(lhs.template packet<Aligned>(row, i), ei_pset1(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Cache friendly product callers and specific nested evaluation strategies
***************************************************************************/
/** \internal */
template<typename Derived>
template<typename Lhs,typename Rhs>
@ -339,6 +431,28 @@ inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFrien
return derived();
}
template<typename T> class ei_product_eval_to_column_major
{
typedef typename ei_traits<T>::Scalar _Scalar;
enum {
_Rows = ei_traits<T>::RowsAtCompileTime,
_Cols = ei_traits<T>::ColsAtCompileTime,
_MaxRows = ei_traits<T>::MaxRowsAtCompileTime,
_MaxCols = ei_traits<T>::MaxColsAtCompileTime,
_Flags = ei_traits<T>::Flags
};
public:
typedef Matrix<_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
ei_corrected_matrix_flags<
_Scalar,
_Rows, _Cols, _MaxRows, _MaxCols,
_Flags
>::ret & ~RowMajorBit
> type;
};
template<typename T> struct ei_product_copy_rhs
{
typedef typename ei_meta_if<

View File

@ -140,7 +140,7 @@ enum { Aligned=0, UnAligned=1 };
enum { ConditionalJumpCost = 5 };
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal };
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct, LazyProduct};
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct };
#endif // EIGEN_CONSTANTS_H

View File

@ -26,7 +26,6 @@
#define EIGEN_FORWARDDECLARATIONS_H
template<typename T> struct ei_traits;
template<typename Lhs, typename Rhs> struct ei_product_eval_mode;
template<typename T> struct NumTraits;
template<typename Scalar, int Rows, int Cols, int MaxRows, int MaxCols, unsigned int SuggestedFlags> class ei_corrected_matrix_flags;
@ -49,7 +48,7 @@ template<typename MatrixType> class Conjugate;
template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
template<typename Lhs, typename Rhs, int EvalMode=ei_product_eval_mode<Lhs,Rhs>::value> class Product;
template<typename Lhs, typename Rhs, int ProductMode> class Product;
template<typename CoeffsVectorType> class DiagonalMatrix;
template<typename MatrixType> class DiagonalCoeffs;
template<typename MatrixType> class Map;
@ -63,6 +62,8 @@ template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Transform;
template<typename Lhs, typename Rhs> struct ei_product_mode;
template<typename Lhs, typename Rhs, int ProductMode = ei_product_mode<Lhs,Rhs>::value> struct ProductReturnType;
template<typename Scalar> struct ei_scalar_sum_op;
template<typename Scalar> struct ei_scalar_difference_op;

View File

@ -160,10 +160,7 @@ class ei_corrected_matrix_flags
packet_access_bit
= ei_packet_traits<Scalar>::size > 1
&& (is_big || inner_size%ei_packet_traits<Scalar>::size==0)
? PacketAccessBit : 0,
_flags1 = (SuggestedFlags & ~(EvalBeforeNestingBit | EvalBeforeAssigningBit | PacketAccessBit | RowMajorBit))
| LinearAccessBit | DirectAccessBit
? PacketAccessBit : 0
};
public:
@ -208,7 +205,7 @@ template<typename T> struct ei_must_nest_by_value { enum { ret = false }; };
template<typename T> struct ei_must_nest_by_value<NestByValue<T> > { enum { ret = true }; };
template<typename T, int n=1> struct ei_nested
template<typename T, int n=1, typename EvalType = typename ei_eval<T>::type> struct ei_nested
{
typedef typename ei_meta_if<
ei_must_nest_by_value<T>::ret,
@ -216,7 +213,7 @@ template<typename T, int n=1> struct ei_nested
typename ei_meta_if<
(int(ei_traits<T>::Flags) & EvalBeforeNestingBit)
|| ((n+1) * int(NumTraits<typename ei_traits<T>::Scalar>::ReadCost) <= (n-1) * int(T::CoeffReadCost)),
typename ei_eval<T>::type,
EvalType,
const T&
>::ret
>::ret type;

View File

@ -107,10 +107,10 @@ struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representating the rotation angle
* This class is equivalent to a single scalar representing the rotation angle
* in radian with some additional features such as the conversion from/to
* rotation matrix. Moreover this class aims to provide a similar interface
* to Quaternion in order to facilitate the writting of generic algorithm
* to Quaternion in order to facilitate the writing of generic algorithm
* dealing with rotations.
*
* \sa class Quaternion, class Transform

View File

@ -103,17 +103,17 @@ public:
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
template<typename OtherDerived>
struct ProductReturnType
struct TransformProductReturnType
{
typedef typename ei_transform_product_impl<OtherDerived>::ResultType Type;
};
template<typename OtherDerived>
const typename ProductReturnType<OtherDerived>::Type
const typename TransformProductReturnType<OtherDerived>::Type
operator * (const MatrixBase<OtherDerived> &other) const;
/** Contatenates two transformations */
const Product<MatrixType,MatrixType>
const typename ProductReturnType<MatrixType,MatrixType>::Type
operator * (const Transform& other) const
{ return m_matrix * other.matrix(); }
@ -192,7 +192,7 @@ QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
template<typename Scalar, int Dim>
template<typename OtherDerived>
const typename Transform<Scalar,Dim>::template ProductReturnType<OtherDerived>::Type
const typename Transform<Scalar,Dim>::template TransformProductReturnType<OtherDerived>::Type
Transform<Scalar,Dim>::operator*(const MatrixBase<OtherDerived> &other) const
{
return ei_transform_product_impl<OtherDerived>::run(*this,other.derived());
@ -380,7 +380,7 @@ template<typename Other>
struct Transform<Scalar,Dim>::ei_transform_product_impl<Other,Dim+1,Dim+1>
{
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
typedef Product<MatrixType,Other> ResultType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return tr.matrix() * other; }
};
@ -390,7 +390,7 @@ template<typename Other>
struct Transform<Scalar,Dim>::ei_transform_product_impl<Other,Dim+1,1>
{
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
typedef Product<MatrixType,Other> ResultType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return tr.matrix() * other; }
};
@ -404,7 +404,7 @@ struct Transform<Scalar,Dim>::ei_transform_product_impl<Other,Dim,1>
ei_scalar_multiple_op<Scalar>,
NestByValue<CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<Product<NestByValue<MatrixType>,Other> >,
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
NestByValue<typename Transform<Scalar,Dim>::VectorRef> > >
> ResultType;
// FIXME shall we offer an optimized version when the last row is know to be 0,0...,0,1 ?

View File

@ -4,7 +4,7 @@
int main(int argc, char *argv[])
{
// disbale floating point exceptions
// disable floating point exceptions
// this leads to more stable bench results
// (this is done by default by ICC)
#ifndef __INTEL_COMPILER

View File

@ -61,7 +61,7 @@ template<typename MatrixType> void product(const MatrixType& m)
// (we use Transpose.h but this doesn't count as a test for it)
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
m3 = m1;
m3 *= (m1.transpose() * m2);
m3 *= m1.transpose() * m2;
VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2));
@ -91,6 +91,8 @@ void test_product()
CALL_SUBTEST( product(Matrix3i()) );
CALL_SUBTEST( product(Matrix<float, 3, 2>()) );
CALL_SUBTEST( product(Matrix4d()) );
CALL_SUBTEST( product(Matrix4f()) );
CALL_SUBTEST( product(MatrixXf(3,5)) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( product(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );