add support for solving with sparse right hand side

This commit is contained in:
Desire NUENTSA 2013-01-25 18:17:17 +01:00
parent 7282a45a0a
commit 81d4bfa8d9
8 changed files with 50 additions and 91 deletions

View File

@ -157,27 +157,6 @@ class PastixBase : internal::noncopyable
template<typename Rhs,typename Dest>
bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(rows()==b.rows());
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
static const int NbColsAtOnce = 1;
int rhsCols = b.cols();
int size = b.rows();
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
{
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
tmp.leftCols(actualCols) = b.middleCols(k,actualCols);
tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols));
dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView();
}
}
Derived& derived()
{
return *static_cast<Derived*>(this);
@ -731,7 +710,7 @@ struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve_sparse(rhs(),dst);
this->defaultEvalTo(dst);
}
};

View File

@ -206,29 +206,6 @@ class PardisoImpl
template<typename BDerived, typename XDerived>
bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_size==b.rows());
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
static const int NbColsAtOnce = 4;
int rhsCols = b.cols();
int size = b.rows();
// Pardiso cannot solve in-place,
// so we need two temporaries
Eigen::Matrix<DestScalar,Dynamic,Dynamic,ColMajor> tmp_rhs(size,rhsCols);
Eigen::Matrix<DestScalar,Dynamic,Dynamic,ColMajor> tmp_res(size,rhsCols);
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
{
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
tmp_rhs.leftCols(actualCols) = b.middleCols(k,actualCols);
tmp_res.leftCols(actualCols) = derived().solve(tmp_rhs.leftCols(actualCols));
dest.middleCols(k,actualCols) = tmp_res.leftCols(actualCols).sparseView();
}
}
protected:
void pardisoRelease()
{
@ -604,7 +581,7 @@ struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
dec().derived()._solve_sparse(rhs(),dst);
this->defaultEvalTo(dst);
}
};

View File

@ -215,27 +215,6 @@ class SimplicialCholeskyBase : internal::noncopyable
dest = m_Pinv * dest;
}
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(m_matrix.rows()==b.rows());
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
static const int NbColsAtOnce = 4;
int rhsCols = b.cols();
int size = b.rows();
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
{
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
tmp.leftCols(actualCols) = b.middleCols(k,actualCols);
tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols));
dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView();
}
}
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
@ -864,7 +843,7 @@ struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
dec().derived()._solve_sparse(rhs(),dst);
this->defaultEvalTo(dst);
}
};

View File

@ -353,14 +353,14 @@ class SuperLUBase : internal::noncopyable
*
* \sa compute()
*/
// template<typename Rhs>
// inline const internal::sparse_solve_retval<SuperLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
// {
// eigen_assert(m_isInitialized && "SuperLU is not initialized.");
// eigen_assert(rows()==b.rows()
// && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
// return internal::sparse_solve_retval<SuperLU, Rhs>(*this, b.derived());
// }
template<typename Rhs>
inline const internal::sparse_solve_retval<SuperLUBase, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "SuperLU is not initialized.");
eigen_assert(rows()==b.rows()
&& "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<SuperLUBase, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
@ -1015,7 +1015,7 @@ struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
dec().derived()._solve(rhs(),dst);
this->defaultEvalTo(dst);
}
};

View File

@ -215,14 +215,14 @@ class UmfPackLU : internal::noncopyable
*
* \sa compute()
*/
// template<typename Rhs>
// inline const internal::sparse_solve_retval<UmfPAckLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
// {
// eigen_assert(m_isInitialized && "UmfPAckLU is not initialized.");
// eigen_assert(rows()==b.rows()
// && "UmfPAckLU::solve(): invalid number of rows of the right hand side matrix b");
// return internal::sparse_solve_retval<UmfPAckLU, Rhs>(*this, b.derived());
// }
template<typename Rhs>
inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
eigen_assert(rows()==b.rows()
&& "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
@ -381,7 +381,8 @@ bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDe
const int rhsCols = b.cols();
eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
int errorCode;
for (int j=0; j<rhsCols; ++j)
{
@ -420,7 +421,7 @@ struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
this->defaultEvalTo(dst);
}
};

View File

@ -47,6 +47,23 @@ template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_b
}
protected:
template<typename DestScalar, int DestOptions, typename DestIndex>
inline void defaultEvalTo(SparseMatrix<DestScalar,DestOptions,DestIndex>& dst) const
{
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
static const int NbColsAtOnce = 4;
int rhsCols = m_rhs.cols();
int size = m_rhs.rows();
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,rhsCols);
for(int k=0; k<rhsCols; k+=NbColsAtOnce)
{
int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
tmp.leftCols(actualCols) = m_rhs.middleCols(k,actualCols);
tmpX.leftCols(actualCols) = m_dec.solve(tmp.leftCols(actualCols));
dst.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
}
}
const DecompositionType& m_dec;
typename Rhs::Nested m_rhs;
};

View File

@ -14,9 +14,10 @@ find_path(SUPERLU_INCLUDES
${INCLUDE_INSTALL_DIR}
PATH_SUFFIXES
superlu
SRC
)
find_library(SUPERLU_LIBRARIES superlu PATHS $ENV{SUPERLUDIR} ${LIB_INSTALL_DIR})
find_library(SUPERLU_LIBRARIES superlu PATHS $ENV{SUPERLUDIR} ${LIB_INSTALL_DIR} PATH_SUFFIXES lib)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(SUPERLU DEFAULT_MSG

View File

@ -37,7 +37,6 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
x.setZero();
// test the analyze/factorize API
solver.analyzePattern(A);
@ -258,6 +257,7 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver)
{
typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar;
typedef SparseMatrix<Scalar,ColMajor> SpMat;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
@ -267,12 +267,17 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver)
DenseMatrix dA;
int size = generate_sparse_square_problem(solver, A, dA);
DenseVector b = DenseVector::Random(size);
DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
A.makeCompressed();
DenseVector b = DenseVector::Random(size);
DenseMatrix dB(size,rhsCols);
SpMat B(size,rhsCols);
double density = (std::max)(8./(size*rhsCols), 0.1);
initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
B.makeCompressed();
for (int i = 0; i < g_repeat; i++) {
check_sparse_solving(solver, A, b, dA, b);
check_sparse_solving(solver, A, dB, dA, dB);
check_sparse_solving(solver, A, B, dA, dB);
}
// First, get the folder