diff --git a/Eigen/Core b/Eigen/Core index aeaefbed6..ad86be3dd 100644 --- a/Eigen/Core +++ b/Eigen/Core @@ -321,7 +321,7 @@ using std::size_t; #include "src/Core/CommaInitializer.h" #include "src/Core/Flagged.h" #include "src/Core/ProductBase.h" -#include "src/Core/Product.h" +#include "src/Core/GeneralProduct.h" #include "src/Core/TriangularMatrix.h" #include "src/Core/SelfAdjointView.h" #include "src/Core/SolveTriangular.h" @@ -351,6 +351,7 @@ using std::size_t; #include "src/Core/ArrayWrapper.h" #ifdef EIGEN_ENABLE_EVALUATORS +#include "src/Core/Product.h" #include "src/Core/CoreEvaluators.h" #include "src/Core/AssignEvaluator.h" #endif diff --git a/Eigen/src/Core/GeneralProduct.h b/Eigen/src/Core/GeneralProduct.h new file mode 100644 index 000000000..2d63120cf --- /dev/null +++ b/Eigen/src/Core/GeneralProduct.h @@ -0,0 +1,609 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2008 Benoit Jacob +// Copyright (C) 2008-2011 Gael Guennebaud +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_GENERAL_PRODUCT_H +#define EIGEN_GENERAL_PRODUCT_H + +/** \class GeneralProduct + * \ingroup Core_Module + * + * \brief Expression of the product of two general matrices or vectors + * + * \param LhsNested the type used to store the left-hand side + * \param RhsNested the type used to store the right-hand side + * \param ProductMode the type of the product + * + * This class represents an expression of the product of two general matrices. + * We call a general matrix, a dense matrix with full storage. For instance, + * This excludes triangular, selfadjoint, and sparse matrices. + * It is the return type of the operator* between general matrices. Its template + * arguments are determined automatically by ProductReturnType. Therefore, + * GeneralProduct should never be used direclty. To determine the result type of a + * function which involves a matrix product, use ProductReturnType::Type. + * + * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase&) + */ +template::value> +class GeneralProduct; + +enum { + Large = 2, + Small = 3 +}; + +namespace internal { + +template struct product_type_selector; + +template struct product_size_category +{ + enum { is_large = MaxSize == Dynamic || + Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD, + value = is_large ? Large + : Size == 1 ? 1 + : Small + }; +}; + +template struct product_type +{ + typedef typename remove_all::type _Lhs; + typedef typename remove_all::type _Rhs; + enum { + MaxRows = _Lhs::MaxRowsAtCompileTime, + Rows = _Lhs::RowsAtCompileTime, + MaxCols = _Rhs::MaxColsAtCompileTime, + Cols = _Rhs::ColsAtCompileTime, + MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime, + _Rhs::MaxRowsAtCompileTime), + Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, + _Rhs::RowsAtCompileTime), + LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD + }; + + // the splitting into different lines of code here, introducing the _select enums and the typedef below, + // is to work around an internal compiler error with gcc 4.1 and 4.2. +private: + enum { + rows_select = product_size_category::value, + cols_select = product_size_category::value, + depth_select = product_size_category::value + }; + typedef product_type_selector selector; + +public: + enum { + value = selector::ret + }; +#ifdef EIGEN_DEBUG_PRODUCT + static void debug() + { + EIGEN_DEBUG_VAR(Rows); + EIGEN_DEBUG_VAR(Cols); + EIGEN_DEBUG_VAR(Depth); + EIGEN_DEBUG_VAR(rows_select); + EIGEN_DEBUG_VAR(cols_select); + EIGEN_DEBUG_VAR(depth_select); + EIGEN_DEBUG_VAR(value); + } +#endif +}; + + +/* The following allows to select the kind of product at compile time + * based on the three dimensions of the product. + * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ +// FIXME I'm not sure the current mapping is the ideal one. +template struct product_type_selector { enum { ret = OuterProduct }; }; +template struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; +template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; +template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = GemvProduct }; }; +template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; +template<> struct product_type_selector { enum { ret = GemmProduct }; }; + +} // end namespace internal + +/** \class ProductReturnType + * \ingroup Core_Module + * + * \brief Helper class to get the correct and optimized returned type of operator* + * + * \param Lhs the type of the left-hand side + * \param Rhs the type of the right-hand side + * \param ProductMode the type of the product (determined automatically by internal::product_mode) + * + * This class defines the typename Type representing the optimized product expression + * between two matrix expressions. In practice, using ProductReturnType::Type + * is the recommended way to define the result type of a function returning an expression + * which involve a matrix product. The class Product should never be + * used directly. + * + * \sa class Product, MatrixBase::operator*(const MatrixBase&) + */ +template +struct ProductReturnType +{ + // TODO use the nested type to reduce instanciations ???? +// typedef typename internal::nested::type LhsNested; +// typedef typename internal::nested::type RhsNested; + + typedef GeneralProduct Type; +}; + +template +struct ProductReturnType +{ + typedef typename internal::nested::type >::type LhsNested; + typedef typename internal::nested::type >::type RhsNested; + typedef CoeffBasedProduct Type; +}; + +template +struct ProductReturnType +{ + typedef typename internal::nested::type >::type LhsNested; + typedef typename internal::nested::type >::type RhsNested; + typedef CoeffBasedProduct Type; +}; + +// this is a workaround for sun CC +template +struct LazyProductReturnType : public ProductReturnType +{}; + +/*********************************************************************** +* Implementation of Inner Vector Vector Product +***********************************************************************/ + +// FIXME : maybe the "inner product" could return a Scalar +// instead of a 1x1 matrix ?? +// Pro: more natural for the user +// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix +// product ends up to a row-vector times col-vector product... To tackle this use +// case, we could have a specialization for Block with: operator=(Scalar x); + +namespace internal { + +template +struct traits > + : traits::ReturnType,1,1> > +{}; + +} + +template +class GeneralProduct + : internal::no_assignment_operator, + public Matrix::ReturnType,1,1> +{ + typedef Matrix::ReturnType,1,1> Base; + public: + GeneralProduct(const Lhs& lhs, const Rhs& rhs) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); + } + + /** Convertion to scalar */ + operator const typename Base::Scalar() const { + return Base::coeff(0,0); + } +}; + +/*********************************************************************** +* Implementation of Outer Vector Vector Product +***********************************************************************/ + +namespace internal { +template struct outer_product_selector; + +template +struct traits > + : traits, Lhs, Rhs> > +{}; + +} + +template +class GeneralProduct + : public ProductBase, Lhs, Rhs> +{ + public: + EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) + + GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + } + + template void scaleAndAddTo(Dest& dest, Scalar alpha) const + { + internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha); + } +}; + +namespace internal { + +template<> struct outer_product_selector { + template + static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) { + typedef typename Dest::Index Index; + // FIXME make sure lhs is sequentially stored + // FIXME not very good if rhs is real and lhs complex while alpha is real too + const Index cols = dest.cols(); + for (Index j=0; j struct outer_product_selector { + template + static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) { + typedef typename Dest::Index Index; + // FIXME make sure rhs is sequentially stored + // FIXME not very good if lhs is real and rhs complex while alpha is real too + const Index rows = dest.rows(); + for (Index i=0; i call fast BLAS-like colmajor routine + * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine + * 3 - all other cases are handled using a simple loop along the outer-storage direction. + * Therefore we need a lower level meta selector. + * Furthermore, if the matrix is the rhs, then the product has to be transposed. + */ +namespace internal { + +template +struct traits > + : traits, Lhs, Rhs> > +{}; + +template +struct gemv_selector; + +} // end namespace internal + +template +class GeneralProduct + : public ProductBase, Lhs, Rhs> +{ + public: + EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) + + typedef typename Lhs::Scalar LhsScalar; + typedef typename Rhs::Scalar RhsScalar; + + GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) + { +// EIGEN_STATIC_ASSERT((internal::is_same::value), +// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + } + + enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; + typedef typename internal::conditional::type MatrixType; + + template void scaleAndAddTo(Dest& dst, Scalar alpha) const + { + eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols()); + internal::gemv_selector::HasUsableDirectAccess)>::run(*this, dst, alpha); + } +}; + +namespace internal { + +// The vector is on the left => transposition +template +struct gemv_selector +{ + template + static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) + { + Transpose destT(dest); + enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; + gemv_selector + ::run(GeneralProduct,Transpose, GemvProduct> + (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha); + } +}; + +template struct gemv_static_vector_if; + +template +struct gemv_static_vector_if +{ + EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; } +}; + +template +struct gemv_static_vector_if +{ + EIGEN_STRONG_INLINE Scalar* data() { return 0; } +}; + +template +struct gemv_static_vector_if +{ + internal::plain_array m_data; + EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } +}; + +template<> struct gemv_selector +{ + template + static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) + { + typedef typename ProductType::Index Index; + typedef typename ProductType::LhsScalar LhsScalar; + typedef typename ProductType::RhsScalar RhsScalar; + typedef typename ProductType::Scalar ResScalar; + typedef typename ProductType::RealScalar RealScalar; + typedef typename ProductType::ActualLhsType ActualLhsType; + typedef typename ProductType::ActualRhsType ActualRhsType; + typedef typename ProductType::LhsBlasTraits LhsBlasTraits; + typedef typename ProductType::RhsBlasTraits RhsBlasTraits; + typedef Map, Aligned> MappedDest; + + const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs()); + const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs()); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) + * RhsBlasTraits::extractScalarFactor(prod.rhs()); + + enum { + // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 + // on, the other hand it is good for the cache to pack the vector anyways... + EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1, + ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), + MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal + }; + + gemv_static_vector_if static_dest; + + bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0)); + bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; + + RhsScalar compatibleAlpha = get_factor::run(actualAlpha); + + ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), + evalToDest ? dest.data() : static_dest.data()); + + if(!evalToDest) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + int size = dest.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + if(!alphaIsCompatible) + { + MappedDest(actualDestPtr, dest.size()).setZero(); + compatibleAlpha = RhsScalar(1); + } + else + MappedDest(actualDestPtr, dest.size()) = dest; + } + + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + &actualLhs.coeffRef(0,0), actualLhs.outerStride(), + actualRhs.data(), actualRhs.innerStride(), + actualDestPtr, 1, + compatibleAlpha); + + if (!evalToDest) + { + if(!alphaIsCompatible) + dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); + else + dest = MappedDest(actualDestPtr, dest.size()); + } + } +}; + +template<> struct gemv_selector +{ + template + static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) + { + typedef typename ProductType::LhsScalar LhsScalar; + typedef typename ProductType::RhsScalar RhsScalar; + typedef typename ProductType::Scalar ResScalar; + typedef typename ProductType::Index Index; + typedef typename ProductType::ActualLhsType ActualLhsType; + typedef typename ProductType::ActualRhsType ActualRhsType; + typedef typename ProductType::_ActualRhsType _ActualRhsType; + typedef typename ProductType::LhsBlasTraits LhsBlasTraits; + typedef typename ProductType::RhsBlasTraits RhsBlasTraits; + + typename add_const::type actualLhs = LhsBlasTraits::extract(prod.lhs()); + typename add_const::type actualRhs = RhsBlasTraits::extract(prod.rhs()); + + ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) + * RhsBlasTraits::extractScalarFactor(prod.rhs()); + + enum { + // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 + // on, the other hand it is good for the cache to pack the vector anyways... + DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1 + }; + + gemv_static_vector_if static_rhs; + + ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), + DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); + + if(!DirectlyUseRhs) + { + #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN + int size = actualRhs.size(); + EIGEN_DENSE_STORAGE_CTOR_PLUGIN + #endif + Map(actualRhsPtr, actualRhs.size()) = actualRhs; + } + + general_matrix_vector_product + ::run( + actualLhs.rows(), actualLhs.cols(), + &actualLhs.coeffRef(0,0), actualLhs.outerStride(), + actualRhsPtr, 1, + &dest.coeffRef(0,0), dest.innerStride(), + actualAlpha); + } +}; + +template<> struct gemv_selector +{ + template + static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) + { + typedef typename Dest::Index Index; + // TODO makes sure dest is sequentially stored in memory, otherwise use a temp + const Index size = prod.rhs().rows(); + for(Index k=0; k struct gemv_selector +{ + template + static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) + { + typedef typename Dest::Index Index; + // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp + const Index rows = prod.rows(); + for(Index i=0; i +template +inline const typename ProductReturnType::Type +MatrixBase::operator*(const MatrixBase &other) const +{ + // A note regarding the function declaration: In MSVC, this function will sometimes + // not be inlined since DenseStorage is an unwindable object for dynamic + // matrices and product types are holding a member to store the result. + // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. + enum { + ProductIsValid = Derived::ColsAtCompileTime==Dynamic + || OtherDerived::RowsAtCompileTime==Dynamic + || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), + AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, + SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) + }; + // note to the lost user: + // * for a dot product use: v1.dot(v2) + // * for a coeff-wise product use: v1.cwiseProduct(v2) + EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), + INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) + EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), + INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) + EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) +#ifdef EIGEN_DEBUG_PRODUCT + internal::product_type::debug(); +#endif + return typename ProductReturnType::Type(derived(), other.derived()); +} + +/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. + * + * The returned product will behave like any other expressions: the coefficients of the product will be + * computed once at a time as requested. This might be useful in some extremely rare cases when only + * a small and no coherent fraction of the result's coefficients have to be computed. + * + * \warning This version of the matrix product can be much much slower. So use it only if you know + * what you are doing and that you measured a true speed improvement. + * + * \sa operator*(const MatrixBase&) + */ +template +template +const typename LazyProductReturnType::Type +MatrixBase::lazyProduct(const MatrixBase &other) const +{ + enum { + ProductIsValid = Derived::ColsAtCompileTime==Dynamic + || OtherDerived::RowsAtCompileTime==Dynamic + || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), + AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, + SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) + }; + // note to the lost user: + // * for a dot product use: v1.dot(v2) + // * for a coeff-wise product use: v1.cwiseProduct(v2) + EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), + INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) + EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), + INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) + EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) + + return typename LazyProductReturnType::Type(derived(), other.derived()); +} + +#endif // EIGEN_PRODUCT_H diff --git a/Eigen/src/Core/Product.h b/Eigen/src/Core/Product.h index bde25375d..9bea26886 100644 --- a/Eigen/src/Core/Product.h +++ b/Eigen/src/Core/Product.h @@ -1,8 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008-2011 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -26,584 +25,103 @@ #ifndef EIGEN_PRODUCT_H #define EIGEN_PRODUCT_H -/** \class GeneralProduct +template class Product; +template class ProductImpl; + +/** \class Product * \ingroup Core_Module * - * \brief Expression of the product of two general matrices or vectors + * \brief Expression of the product of two arbitrary matrices or vectors * - * \param LhsNested the type used to store the left-hand side - * \param RhsNested the type used to store the right-hand side - * \param ProductMode the type of the product + * \param Lhs the type of the left-hand side expression + * \param Rhs the type of the right-hand side expression * - * This class represents an expression of the product of two general matrices. - * We call a general matrix, a dense matrix with full storage. For instance, - * This excludes triangular, selfadjoint, and sparse matrices. - * It is the return type of the operator* between general matrices. Its template - * arguments are determined automatically by ProductReturnType. Therefore, - * GeneralProduct should never be used direclty. To determine the result type of a - * function which involves a matrix product, use ProductReturnType::Type. + * This class represents an expression of the product of two arbitrary matrices. * - * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase&) */ -template::value> -class GeneralProduct; - -enum { - Large = 2, - Small = 3 -}; namespace internal { - -template struct product_type_selector; - -template struct product_size_category +template +struct traits > { - enum { is_large = MaxSize == Dynamic || - Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD, - value = is_large ? Large - : Size == 1 ? 1 - : Small + typedef MatrixXpr XprKind; + typedef typename remove_all::type LhsCleaned; + typedef typename remove_all::type RhsCleaned; + typedef typename scalar_product_traits::Scalar, typename traits::Scalar>::ReturnType Scalar; + typedef typename promote_storage_type::StorageKind, + typename traits::StorageKind>::ret StorageKind; + typedef typename promote_index_type::Index, + typename traits::Index>::type Index; + enum { + RowsAtCompileTime = LhsCleaned::RowsAtCompileTime, + ColsAtCompileTime = RhsCleaned::ColsAtCompileTime, + MaxRowsAtCompileTime = LhsCleaned::MaxRowsAtCompileTime, + MaxColsAtCompileTime = RhsCleaned::MaxColsAtCompileTime, + Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0), // TODO should be no storage order + CoeffReadCost = 0 // TODO CoeffReadCost should not be part of the expression traits }; }; - -template struct product_type -{ - typedef typename remove_all::type _Lhs; - typedef typename remove_all::type _Rhs; - enum { - MaxRows = _Lhs::MaxRowsAtCompileTime, - Rows = _Lhs::RowsAtCompileTime, - MaxCols = _Rhs::MaxColsAtCompileTime, - Cols = _Rhs::ColsAtCompileTime, - MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime, - _Rhs::MaxRowsAtCompileTime), - Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, - _Rhs::RowsAtCompileTime), - LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD - }; - - // the splitting into different lines of code here, introducing the _select enums and the typedef below, - // is to work around an internal compiler error with gcc 4.1 and 4.2. -private: - enum { - rows_select = product_size_category::value, - cols_select = product_size_category::value, - depth_select = product_size_category::value - }; - typedef product_type_selector selector; - -public: - enum { - value = selector::ret - }; -#ifdef EIGEN_DEBUG_PRODUCT - static void debug() - { - EIGEN_DEBUG_VAR(Rows); - EIGEN_DEBUG_VAR(Cols); - EIGEN_DEBUG_VAR(Depth); - EIGEN_DEBUG_VAR(rows_select); - EIGEN_DEBUG_VAR(cols_select); - EIGEN_DEBUG_VAR(depth_select); - EIGEN_DEBUG_VAR(value); - } -#endif -}; - - -/* The following allows to select the kind of product at compile time - * based on the three dimensions of the product. - * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ -// FIXME I'm not sure the current mapping is the ideal one. -template struct product_type_selector { enum { ret = OuterProduct }; }; -template struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; -template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; -template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = GemvProduct }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; - } // end namespace internal -/** \class ProductReturnType - * \ingroup Core_Module - * - * \brief Helper class to get the correct and optimized returned type of operator* - * - * \param Lhs the type of the left-hand side - * \param Rhs the type of the right-hand side - * \param ProductMode the type of the product (determined automatically by internal::product_mode) - * - * This class defines the typename Type representing the optimized product expression - * between two matrix expressions. In practice, using ProductReturnType::Type - * is the recommended way to define the result type of a function returning an expression - * which involve a matrix product. The class Product should never be - * used directly. - * - * \sa class Product, MatrixBase::operator*(const MatrixBase&) - */ -template -struct ProductReturnType -{ - // TODO use the nested type to reduce instanciations ???? -// typedef typename internal::nested::type LhsNested; -// typedef typename internal::nested::type RhsNested; - - typedef GeneralProduct Type; -}; template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -// this is a workaround for sun CC -template -struct LazyProductReturnType : public ProductReturnType -{}; - -/*********************************************************************** -* Implementation of Inner Vector Vector Product -***********************************************************************/ - -// FIXME : maybe the "inner product" could return a Scalar -// instead of a 1x1 matrix ?? -// Pro: more natural for the user -// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix -// product ends up to a row-vector times col-vector product... To tackle this use -// case, we could have a specialization for Block with: operator=(Scalar x); - -namespace internal { - -template -struct traits > - : traits::ReturnType,1,1> > -{}; - -} - -template -class GeneralProduct - : internal::no_assignment_operator, - public Matrix::ReturnType,1,1> -{ - typedef Matrix::ReturnType,1,1> Base; - public: - GeneralProduct(const Lhs& lhs, const Rhs& rhs) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); - } - - /** Convertion to scalar */ - operator const typename Base::Scalar() const { - return Base::coeff(0,0); - } -}; - -/*********************************************************************** -* Implementation of Outer Vector Vector Product -***********************************************************************/ - -namespace internal { -template struct outer_product_selector; - -template -struct traits > - : traits, Lhs, Rhs> > -{}; - -} - -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> +class Product : public ProductImpl::StorageKind, + typename internal::traits::StorageKind>::ret> { public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - } - - template void scaleAndAddTo(Dest& dest, Scalar alpha) const - { - internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha); - } -}; - -namespace internal { - -template<> struct outer_product_selector { - template - static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) { - typedef typename Dest::Index Index; - // FIXME make sure lhs is sequentially stored - // FIXME not very good if rhs is real and lhs complex while alpha is real too - const Index cols = dest.cols(); - for (Index j=0; j struct outer_product_selector { - template - static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) { - typedef typename Dest::Index Index; - // FIXME make sure rhs is sequentially stored - // FIXME not very good if lhs is real and rhs complex while alpha is real too - const Index rows = dest.rows(); - for (Index i=0; i call fast BLAS-like colmajor routine - * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine - * 3 - all other cases are handled using a simple loop along the outer-storage direction. - * Therefore we need a lower level meta selector. - * Furthermore, if the matrix is the rhs, then the product has to be transposed. - */ -namespace internal { - -template -struct traits > - : traits, Lhs, Rhs> > -{}; - -template -struct gemv_selector; - -} // end namespace internal - -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> -{ - public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - - GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) - { -// EIGEN_STATIC_ASSERT((internal::is_same::value), -// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - } - - enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; - typedef typename internal::conditional::type MatrixType; - - template void scaleAndAddTo(Dest& dst, Scalar alpha) const - { - eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols()); - internal::gemv_selector::HasUsableDirectAccess)>::run(*this, dst, alpha); - } -}; - -namespace internal { - -// The vector is on the left => transposition -template -struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) - { - Transpose destT(dest); - enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; - gemv_selector - ::run(GeneralProduct,Transpose, GemvProduct> - (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha); - } -}; - -template struct gemv_static_vector_if; - -template -struct gemv_static_vector_if -{ - EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; } -}; - -template -struct gemv_static_vector_if -{ - EIGEN_STRONG_INLINE Scalar* data() { return 0; } -}; - -template -struct gemv_static_vector_if -{ - internal::plain_array m_data; - EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } -}; - -template<> struct gemv_selector -{ - template - static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) - { - typedef typename ProductType::Index Index; - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::RealScalar RealScalar; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; - typedef Map, Aligned> MappedDest; - - const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs()); - const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); - - enum { - // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 - // on, the other hand it is good for the cache to pack the vector anyways... - EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1, - ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), - MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal - }; - - gemv_static_vector_if static_dest; - - bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0)); - bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; - RhsScalar compatibleAlpha = get_factor::run(actualAlpha); + typedef typename ProductImpl< + Lhs, Rhs, + typename internal::promote_storage_type::ret>::Base Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(Product) - ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), - evalToDest ? dest.data() : static_dest.data()); - - if(!evalToDest) + typedef typename Lhs::Nested LhsNested; + typedef typename Rhs::Nested RhsNested; + typedef typename internal::remove_all::type LhsNestedCleaned; + typedef typename internal::remove_all::type RhsNestedCleaned; + + Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = dest.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - if(!alphaIsCompatible) - { - MappedDest(actualDestPtr, dest.size()).setZero(); - compatibleAlpha = RhsScalar(1); - } - else - MappedDest(actualDestPtr, dest.size()) = dest; + eigen_assert(lhs.cols() == rhs.rows() + && "invalid matrix product" + && "if you wanted a coeff-wise or a dot product use the respective explicit functions"); } - general_matrix_vector_product - ::run( - actualLhs.rows(), actualLhs.cols(), - &actualLhs.coeffRef(0,0), actualLhs.outerStride(), - actualRhs.data(), actualRhs.innerStride(), - actualDestPtr, 1, - compatibleAlpha); + inline Index rows() const { return m_lhs.rows(); } + inline Index cols() const { return m_rhs.cols(); } - if (!evalToDest) - { - if(!alphaIsCompatible) - dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); - else - dest = MappedDest(actualDestPtr, dest.size()); - } - } + const LhsNestedCleaned& lhs() const { return m_lhs; } + const RhsNestedCleaned& rhs() const { return m_rhs; } + + protected: + + const LhsNested m_lhs; + const RhsNested m_rhs; }; -template<> struct gemv_selector +template +class ProductImpl : public internal::dense_xpr_base >::type { - template - static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) - { - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::Index Index; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::_ActualRhsType _ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; + typedef Product Derived; + public: - typename add_const::type actualLhs = LhsBlasTraits::extract(prod.lhs()); - typename add_const::type actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); - - enum { - // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 - // on, the other hand it is good for the cache to pack the vector anyways... - DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1 - }; - - gemv_static_vector_if static_rhs; - - ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), - DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); - - if(!DirectlyUseRhs) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = actualRhs.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - Map(actualRhsPtr, actualRhs.size()) = actualRhs; - } - - general_matrix_vector_product - ::run( - actualLhs.rows(), actualLhs.cols(), - &actualLhs.coeffRef(0,0), actualLhs.outerStride(), - actualRhsPtr, 1, - &dest.coeffRef(0,0), dest.innerStride(), - actualAlpha); - } + typedef typename internal::dense_xpr_base >::type Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Derived) }; -template<> struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) - { - typedef typename Dest::Index Index; - // TODO makes sure dest is sequentially stored in memory, otherwise use a temp - const Index size = prod.rhs().rows(); - for(Index k=0; k struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) - { - typedef typename Dest::Index Index; - // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp - const Index rows = prod.rows(); - for(Index i=0; i -template -inline const typename ProductReturnType::Type -MatrixBase::operator*(const MatrixBase &other) const -{ - // A note regarding the function declaration: In MSVC, this function will sometimes - // not be inlined since DenseStorage is an unwindable object for dynamic - // matrices and product types are holding a member to store the result. - // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. - enum { - ProductIsValid = Derived::ColsAtCompileTime==Dynamic - || OtherDerived::RowsAtCompileTime==Dynamic - || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), - AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, - SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) - }; - // note to the lost user: - // * for a dot product use: v1.dot(v2) - // * for a coeff-wise product use: v1.cwiseProduct(v2) - EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), - INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) - EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), - INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) - EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) -#ifdef EIGEN_DEBUG_PRODUCT - internal::product_type::debug(); -#endif - return typename ProductReturnType::Type(derived(), other.derived()); -} -/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. - * - * The returned product will behave like any other expressions: the coefficients of the product will be - * computed once at a time as requested. This might be useful in some extremely rare cases when only - * a small and no coherent fraction of the result's coefficients have to be computed. - * - * \warning This version of the matrix product can be much much slower. So use it only if you know - * what you are doing and that you measured a true speed improvement. - * - * \sa operator*(const MatrixBase&) +/** \internal used to test the evaluator only */ -template -template -const typename LazyProductReturnType::Type -MatrixBase::lazyProduct(const MatrixBase &other) const +template +const Product +prod(const Lhs& lhs, const Rhs& rhs) { - enum { - ProductIsValid = Derived::ColsAtCompileTime==Dynamic - || OtherDerived::RowsAtCompileTime==Dynamic - || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), - AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, - SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) - }; - // note to the lost user: - // * for a dot product use: v1.dot(v2) - // * for a coeff-wise product use: v1.cwiseProduct(v2) - EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), - INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) - EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), - INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) - EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) - - return typename LazyProductReturnType::Type(derived(), other.derived()); + return Product(lhs,rhs); } #endif // EIGEN_PRODUCT_H diff --git a/test/evaluators.cpp b/test/evaluators.cpp index ea65439a3..a8eaa0fa9 100644 --- a/test/evaluators.cpp +++ b/test/evaluators.cpp @@ -69,8 +69,8 @@ void test_evaluators() copy_using_evaluator(d, (a + b).transpose()); cout << d << endl; -// copy_using_evaluator(d, (a * b).transpose()); -// cout << d << endl; + copy_using_evaluator(d, prod(a,b).transpose()); + cout << d << endl; // copy_using_evaluator(d, a.transpose() + (a.transpose() * (b+b))); // cout << d << endl;