mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
add a stupid Product<A,B> expression produced by prod(a,b), and implement a first version of its evaluator
This commit is contained in:
parent
cfd5c2d74e
commit
816541d82c
@ -321,7 +321,7 @@ using std::size_t;
|
||||
#include "src/Core/CommaInitializer.h"
|
||||
#include "src/Core/Flagged.h"
|
||||
#include "src/Core/ProductBase.h"
|
||||
#include "src/Core/Product.h"
|
||||
#include "src/Core/GeneralProduct.h"
|
||||
#include "src/Core/TriangularMatrix.h"
|
||||
#include "src/Core/SelfAdjointView.h"
|
||||
#include "src/Core/SolveTriangular.h"
|
||||
@ -351,6 +351,7 @@ using std::size_t;
|
||||
#include "src/Core/ArrayWrapper.h"
|
||||
|
||||
#ifdef EIGEN_ENABLE_EVALUATORS
|
||||
#include "src/Core/Product.h"
|
||||
#include "src/Core/CoreEvaluators.h"
|
||||
#include "src/Core/AssignEvaluator.h"
|
||||
#endif
|
||||
|
609
Eigen/src/Core/GeneralProduct.h
Normal file
609
Eigen/src/Core/GeneralProduct.h
Normal file
@ -0,0 +1,609 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_GENERAL_PRODUCT_H
|
||||
#define EIGEN_GENERAL_PRODUCT_H
|
||||
|
||||
/** \class GeneralProduct
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the product of two general matrices or vectors
|
||||
*
|
||||
* \param LhsNested the type used to store the left-hand side
|
||||
* \param RhsNested the type used to store the right-hand side
|
||||
* \param ProductMode the type of the product
|
||||
*
|
||||
* This class represents an expression of the product of two general matrices.
|
||||
* We call a general matrix, a dense matrix with full storage. For instance,
|
||||
* This excludes triangular, selfadjoint, and sparse matrices.
|
||||
* It is the return type of the operator* between general matrices. Its template
|
||||
* arguments are determined automatically by ProductReturnType. Therefore,
|
||||
* GeneralProduct should never be used direclty. To determine the result type of a
|
||||
* function which involves a matrix product, use ProductReturnType::Type.
|
||||
*
|
||||
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
|
||||
class GeneralProduct;
|
||||
|
||||
enum {
|
||||
Large = 2,
|
||||
Small = 3
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int Rows, int Cols, int Depth> struct product_type_selector;
|
||||
|
||||
template<int Size, int MaxSize> struct product_size_category
|
||||
{
|
||||
enum { is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs> struct product_type
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type _Lhs;
|
||||
typedef typename remove_all<Rhs>::type _Rhs;
|
||||
enum {
|
||||
MaxRows = _Lhs::MaxRowsAtCompileTime,
|
||||
Rows = _Lhs::RowsAtCompileTime,
|
||||
MaxCols = _Rhs::MaxColsAtCompileTime,
|
||||
Cols = _Rhs::ColsAtCompileTime,
|
||||
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
|
||||
_Rhs::MaxRowsAtCompileTime),
|
||||
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
|
||||
_Rhs::RowsAtCompileTime),
|
||||
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
};
|
||||
|
||||
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
|
||||
// is to work around an internal compiler error with gcc 4.1 and 4.2.
|
||||
private:
|
||||
enum {
|
||||
rows_select = product_size_category<Rows,MaxRows>::value,
|
||||
cols_select = product_size_category<Cols,MaxCols>::value,
|
||||
depth_select = product_size_category<Depth,MaxDepth>::value
|
||||
};
|
||||
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
|
||||
|
||||
public:
|
||||
enum {
|
||||
value = selector::ret
|
||||
};
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(Rows);
|
||||
EIGEN_DEBUG_VAR(Cols);
|
||||
EIGEN_DEBUG_VAR(Depth);
|
||||
EIGEN_DEBUG_VAR(rows_select);
|
||||
EIGEN_DEBUG_VAR(cols_select);
|
||||
EIGEN_DEBUG_VAR(depth_select);
|
||||
EIGEN_DEBUG_VAR(value);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
/* The following allows to select the kind of product at compile time
|
||||
* based on the three dimensions of the product.
|
||||
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
|
||||
// FIXME I'm not sure the current mapping is the ideal one.
|
||||
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
|
||||
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \class ProductReturnType
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class to get the correct and optimized returned type of operator*
|
||||
*
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
|
||||
*
|
||||
* This class defines the typename Type representing the optimized product expression
|
||||
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
|
||||
* is the recommended way to define the result type of a function returning an expression
|
||||
* which involve a matrix product. The class Product should never be
|
||||
* used directly.
|
||||
*
|
||||
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct ProductReturnType
|
||||
{
|
||||
// TODO use the nested type to reduce instanciations ????
|
||||
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
|
||||
};
|
||||
|
||||
// this is a workaround for sun CC
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Inner Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
// FIXME : maybe the "inner product" could return a Scalar
|
||||
// instead of a 1x1 matrix ??
|
||||
// Pro: more natural for the user
|
||||
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
|
||||
// product ends up to a row-vector times col-vector product... To tackle this use
|
||||
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
|
||||
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, InnerProduct>
|
||||
: internal::no_assignment_operator,
|
||||
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
|
||||
{
|
||||
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
|
||||
public:
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
/** Convertion to scalar */
|
||||
operator const typename Base::Scalar() const {
|
||||
return Base::coeff(0,0);
|
||||
}
|
||||
};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Outer Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
namespace internal {
|
||||
template<int StorageOrder> struct outer_product_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, OuterProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
||||
{
|
||||
internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> struct outer_product_selector<ColMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure lhs is sequentially stored
|
||||
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
||||
const Index cols = dest.cols();
|
||||
for (Index j=0; j<cols; ++j)
|
||||
dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct outer_product_selector<RowMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure rhs is sequentially stored
|
||||
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
||||
const Index rows = dest.rows();
|
||||
for (Index i=0; i<rows; ++i)
|
||||
dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of General Matrix Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
|
||||
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
|
||||
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
|
||||
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
|
||||
* Therefore we need a lower level meta selector.
|
||||
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
template<int Side, int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, GemvProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
|
||||
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
||||
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
|
||||
{
|
||||
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
|
||||
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
||||
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The vector is on the left => transposition
|
||||
template<int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
Transpose<Dest> destT(dest);
|
||||
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
|
||||
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
|
||||
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
|
||||
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size>
|
||||
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
|
||||
{
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,true>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::RealScalar RealScalar;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
|
||||
|
||||
const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
|
||||
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
|
||||
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
|
||||
};
|
||||
|
||||
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
|
||||
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
|
||||
evalToDest ? dest.data() : static_dest.data());
|
||||
|
||||
if(!evalToDest)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = dest.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
if(!alphaIsCompatible)
|
||||
{
|
||||
MappedDest(actualDestPtr, dest.size()).setZero();
|
||||
compatibleAlpha = RhsScalar(1);
|
||||
}
|
||||
else
|
||||
MappedDest(actualDestPtr, dest.size()) = dest;
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
|
||||
actualRhs.data(), actualRhs.innerStride(),
|
||||
actualDestPtr, 1,
|
||||
compatibleAlpha);
|
||||
|
||||
if (!evalToDest)
|
||||
{
|
||||
if(!alphaIsCompatible)
|
||||
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
|
||||
else
|
||||
dest = MappedDest(actualDestPtr, dest.size());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,true>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::_ActualRhsType _ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
|
||||
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
|
||||
};
|
||||
|
||||
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
|
||||
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
|
||||
|
||||
if(!DirectlyUseRhs)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = actualRhs.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
|
||||
actualRhsPtr, 1,
|
||||
&dest.coeffRef(0,0), dest.innerStride(),
|
||||
actualAlpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
|
||||
const Index size = prod.rhs().rows();
|
||||
for(Index k=0; k<size; ++k)
|
||||
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
|
||||
const Index rows = prod.rows();
|
||||
for(Index i=0; i<rows; ++i)
|
||||
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the matrix product of \c *this and \a other.
|
||||
*
|
||||
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
|
||||
*
|
||||
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename ProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
// A note regarding the function declaration: In MSVC, this function will sometimes
|
||||
// not be inlined since DenseStorage is an unwindable object for dynamic
|
||||
// matrices and product types are holding a member to store the result.
|
||||
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
internal::product_type<Derived,OtherDerived>::debug();
|
||||
#endif
|
||||
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
|
||||
*
|
||||
* The returned product will behave like any other expressions: the coefficients of the product will be
|
||||
* computed once at a time as requested. This might be useful in some extremely rare cases when only
|
||||
* a small and no coherent fraction of the result's coefficients have to be computed.
|
||||
*
|
||||
* \warning This version of the matrix product can be much much slower. So use it only if you know
|
||||
* what you are doing and that you measured a true speed improvement.
|
||||
*
|
||||
* \sa operator*(const MatrixBase&)
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const typename LazyProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
|
||||
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
@ -1,8 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -26,584 +25,103 @@
|
||||
#ifndef EIGEN_PRODUCT_H
|
||||
#define EIGEN_PRODUCT_H
|
||||
|
||||
/** \class GeneralProduct
|
||||
template<typename Lhs, typename Rhs> class Product;
|
||||
template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
|
||||
|
||||
/** \class Product
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of the product of two general matrices or vectors
|
||||
* \brief Expression of the product of two arbitrary matrices or vectors
|
||||
*
|
||||
* \param LhsNested the type used to store the left-hand side
|
||||
* \param RhsNested the type used to store the right-hand side
|
||||
* \param ProductMode the type of the product
|
||||
* \param Lhs the type of the left-hand side expression
|
||||
* \param Rhs the type of the right-hand side expression
|
||||
*
|
||||
* This class represents an expression of the product of two general matrices.
|
||||
* We call a general matrix, a dense matrix with full storage. For instance,
|
||||
* This excludes triangular, selfadjoint, and sparse matrices.
|
||||
* It is the return type of the operator* between general matrices. Its template
|
||||
* arguments are determined automatically by ProductReturnType. Therefore,
|
||||
* GeneralProduct should never be used direclty. To determine the result type of a
|
||||
* function which involves a matrix product, use ProductReturnType::Type.
|
||||
* This class represents an expression of the product of two arbitrary matrices.
|
||||
*
|
||||
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
|
||||
class GeneralProduct;
|
||||
|
||||
enum {
|
||||
Large = 2,
|
||||
Small = 3
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int Rows, int Cols, int Depth> struct product_type_selector;
|
||||
|
||||
template<int Size, int MaxSize> struct product_size_category
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<Product<Lhs, Rhs> >
|
||||
{
|
||||
enum { is_large = MaxSize == Dynamic ||
|
||||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
|
||||
value = is_large ? Large
|
||||
: Size == 1 ? 1
|
||||
: Small
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef typename remove_all<Lhs>::type LhsCleaned;
|
||||
typedef typename remove_all<Rhs>::type RhsCleaned;
|
||||
typedef typename scalar_product_traits<typename traits<LhsCleaned>::Scalar, typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
|
||||
typedef typename promote_storage_type<typename traits<LhsCleaned>::StorageKind,
|
||||
typename traits<RhsCleaned>::StorageKind>::ret StorageKind;
|
||||
typedef typename promote_index_type<typename traits<LhsCleaned>::Index,
|
||||
typename traits<RhsCleaned>::Index>::type Index;
|
||||
enum {
|
||||
RowsAtCompileTime = LhsCleaned::RowsAtCompileTime,
|
||||
ColsAtCompileTime = RhsCleaned::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = LhsCleaned::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = RhsCleaned::MaxColsAtCompileTime,
|
||||
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0), // TODO should be no storage order
|
||||
CoeffReadCost = 0 // TODO CoeffReadCost should not be part of the expression traits
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs> struct product_type
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type _Lhs;
|
||||
typedef typename remove_all<Rhs>::type _Rhs;
|
||||
enum {
|
||||
MaxRows = _Lhs::MaxRowsAtCompileTime,
|
||||
Rows = _Lhs::RowsAtCompileTime,
|
||||
MaxCols = _Rhs::MaxColsAtCompileTime,
|
||||
Cols = _Rhs::ColsAtCompileTime,
|
||||
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
|
||||
_Rhs::MaxRowsAtCompileTime),
|
||||
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
|
||||
_Rhs::RowsAtCompileTime),
|
||||
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
};
|
||||
|
||||
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
|
||||
// is to work around an internal compiler error with gcc 4.1 and 4.2.
|
||||
private:
|
||||
enum {
|
||||
rows_select = product_size_category<Rows,MaxRows>::value,
|
||||
cols_select = product_size_category<Cols,MaxCols>::value,
|
||||
depth_select = product_size_category<Depth,MaxDepth>::value
|
||||
};
|
||||
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
|
||||
|
||||
public:
|
||||
enum {
|
||||
value = selector::ret
|
||||
};
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
static void debug()
|
||||
{
|
||||
EIGEN_DEBUG_VAR(Rows);
|
||||
EIGEN_DEBUG_VAR(Cols);
|
||||
EIGEN_DEBUG_VAR(Depth);
|
||||
EIGEN_DEBUG_VAR(rows_select);
|
||||
EIGEN_DEBUG_VAR(cols_select);
|
||||
EIGEN_DEBUG_VAR(depth_select);
|
||||
EIGEN_DEBUG_VAR(value);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
/* The following allows to select the kind of product at compile time
|
||||
* based on the three dimensions of the product.
|
||||
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
|
||||
// FIXME I'm not sure the current mapping is the ideal one.
|
||||
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
|
||||
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
|
||||
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
|
||||
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
|
||||
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \class ProductReturnType
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class to get the correct and optimized returned type of operator*
|
||||
*
|
||||
* \param Lhs the type of the left-hand side
|
||||
* \param Rhs the type of the right-hand side
|
||||
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
|
||||
*
|
||||
* This class defines the typename Type representing the optimized product expression
|
||||
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
|
||||
* is the recommended way to define the result type of a function returning an expression
|
||||
* which involve a matrix product. The class Product should never be
|
||||
* used directly.
|
||||
*
|
||||
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
|
||||
*/
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct ProductReturnType
|
||||
{
|
||||
// TODO use the nested type to reduce instanciations ????
|
||||
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{
|
||||
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
|
||||
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
|
||||
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
|
||||
};
|
||||
|
||||
// this is a workaround for sun CC
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
|
||||
{};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Inner Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
// FIXME : maybe the "inner product" could return a Scalar
|
||||
// instead of a 1x1 matrix ??
|
||||
// Pro: more natural for the user
|
||||
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
|
||||
// product ends up to a row-vector times col-vector product... To tackle this use
|
||||
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
|
||||
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, InnerProduct>
|
||||
: internal::no_assignment_operator,
|
||||
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
|
||||
{
|
||||
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
|
||||
public:
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
/** Convertion to scalar */
|
||||
operator const typename Base::Scalar() const {
|
||||
return Base::coeff(0,0);
|
||||
}
|
||||
};
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of Outer Vector Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
namespace internal {
|
||||
template<int StorageOrder> struct outer_product_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, OuterProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
|
||||
class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
|
||||
typename internal::traits<Rhs>::StorageKind>::ret>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
||||
{
|
||||
internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> struct outer_product_selector<ColMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure lhs is sequentially stored
|
||||
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
||||
const Index cols = dest.cols();
|
||||
for (Index j=0; j<cols; ++j)
|
||||
dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct outer_product_selector<RowMajor> {
|
||||
template<typename ProductType, typename Dest>
|
||||
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
|
||||
typedef typename Dest::Index Index;
|
||||
// FIXME make sure rhs is sequentially stored
|
||||
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
||||
const Index rows = dest.rows();
|
||||
for (Index i=0; i<rows; ++i)
|
||||
dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***********************************************************************
|
||||
* Implementation of General Matrix Vector Product
|
||||
***********************************************************************/
|
||||
|
||||
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
|
||||
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
|
||||
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
|
||||
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
|
||||
* Therefore we need a lower level meta selector.
|
||||
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
|
||||
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
|
||||
{};
|
||||
|
||||
template<int Side, int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector;
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
class GeneralProduct<Lhs, Rhs, GemvProduct>
|
||||
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
|
||||
{
|
||||
public:
|
||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
|
||||
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
|
||||
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||
{
|
||||
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
|
||||
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
}
|
||||
|
||||
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
||||
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
|
||||
|
||||
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
|
||||
{
|
||||
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
|
||||
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
|
||||
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The vector is on the left => transposition
|
||||
template<int StorageOrder, bool BlasCompatible>
|
||||
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
Transpose<Dest> destT(dest);
|
||||
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
|
||||
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
|
||||
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
|
||||
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size>
|
||||
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
|
||||
};
|
||||
|
||||
template<typename Scalar,int Size,int MaxSize>
|
||||
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
|
||||
{
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,true>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::RealScalar RealScalar;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
|
||||
|
||||
const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
|
||||
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
|
||||
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
|
||||
};
|
||||
|
||||
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
|
||||
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
|
||||
typedef typename ProductImpl<
|
||||
Lhs, Rhs,
|
||||
typename internal::promote_storage_type<typename Lhs::StorageKind,
|
||||
typename Rhs::StorageKind>::ret>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
|
||||
evalToDest ? dest.data() : static_dest.data());
|
||||
|
||||
if(!evalToDest)
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
||||
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
||||
|
||||
Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = dest.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
if(!alphaIsCompatible)
|
||||
{
|
||||
MappedDest(actualDestPtr, dest.size()).setZero();
|
||||
compatibleAlpha = RhsScalar(1);
|
||||
}
|
||||
else
|
||||
MappedDest(actualDestPtr, dest.size()) = dest;
|
||||
eigen_assert(lhs.cols() == rhs.rows()
|
||||
&& "invalid matrix product"
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
|
||||
actualRhs.data(), actualRhs.innerStride(),
|
||||
actualDestPtr, 1,
|
||||
compatibleAlpha);
|
||||
inline Index rows() const { return m_lhs.rows(); }
|
||||
inline Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
if (!evalToDest)
|
||||
{
|
||||
if(!alphaIsCompatible)
|
||||
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
|
||||
else
|
||||
dest = MappedDest(actualDestPtr, dest.size());
|
||||
}
|
||||
}
|
||||
const LhsNestedCleaned& lhs() const { return m_lhs; }
|
||||
const RhsNestedCleaned& rhs() const { return m_rhs; }
|
||||
|
||||
protected:
|
||||
|
||||
const LhsNested m_lhs;
|
||||
const RhsNested m_rhs;
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,true>
|
||||
template<typename Lhs, typename Rhs>
|
||||
class ProductImpl<Lhs,Rhs,Dense> : public internal::dense_xpr_base<Product<Lhs,Rhs> >::type
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename ProductType::LhsScalar LhsScalar;
|
||||
typedef typename ProductType::RhsScalar RhsScalar;
|
||||
typedef typename ProductType::Scalar ResScalar;
|
||||
typedef typename ProductType::Index Index;
|
||||
typedef typename ProductType::ActualLhsType ActualLhsType;
|
||||
typedef typename ProductType::ActualRhsType ActualRhsType;
|
||||
typedef typename ProductType::_ActualRhsType _ActualRhsType;
|
||||
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
|
||||
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
|
||||
typedef Product<Lhs, Rhs> Derived;
|
||||
public:
|
||||
|
||||
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
|
||||
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
|
||||
|
||||
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
|
||||
* RhsBlasTraits::extractScalarFactor(prod.rhs());
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
// on, the other hand it is good for the cache to pack the vector anyways...
|
||||
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
|
||||
};
|
||||
|
||||
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
|
||||
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
|
||||
|
||||
if(!DirectlyUseRhs)
|
||||
{
|
||||
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
int size = actualRhs.size();
|
||||
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
|
||||
#endif
|
||||
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
|
||||
}
|
||||
|
||||
general_matrix_vector_product
|
||||
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
|
||||
actualLhs.rows(), actualLhs.cols(),
|
||||
&actualLhs.coeffRef(0,0), actualLhs.outerStride(),
|
||||
actualRhsPtr, 1,
|
||||
&dest.coeffRef(0,0), dest.innerStride(),
|
||||
actualAlpha);
|
||||
}
|
||||
typedef typename internal::dense_xpr_base<Product<Lhs, Rhs> >::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,ColMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
|
||||
const Index size = prod.rhs().rows();
|
||||
for(Index k=0; k<size; ++k)
|
||||
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct gemv_selector<OnTheRight,RowMajor,false>
|
||||
{
|
||||
template<typename ProductType, typename Dest>
|
||||
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
|
||||
{
|
||||
typedef typename Dest::Index Index;
|
||||
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
|
||||
const Index rows = prod.rows();
|
||||
for(Index i=0; i<rows; ++i)
|
||||
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** \returns the matrix product of \c *this and \a other.
|
||||
*
|
||||
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
|
||||
*
|
||||
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename ProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
// A note regarding the function declaration: In MSVC, this function will sometimes
|
||||
// not be inlined since DenseStorage is an unwindable object for dynamic
|
||||
// matrices and product types are holding a member to store the result.
|
||||
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
#ifdef EIGEN_DEBUG_PRODUCT
|
||||
internal::product_type<Derived,OtherDerived>::debug();
|
||||
#endif
|
||||
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
|
||||
*
|
||||
* The returned product will behave like any other expressions: the coefficients of the product will be
|
||||
* computed once at a time as requested. This might be useful in some extremely rare cases when only
|
||||
* a small and no coherent fraction of the result's coefficients have to be computed.
|
||||
*
|
||||
* \warning This version of the matrix product can be much much slower. So use it only if you know
|
||||
* what you are doing and that you measured a true speed improvement.
|
||||
*
|
||||
* \sa operator*(const MatrixBase&)
|
||||
/** \internal used to test the evaluator only
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const typename LazyProductReturnType<Derived,OtherDerived>::Type
|
||||
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
|
||||
template<typename Lhs,typename Rhs>
|
||||
const Product<Lhs,Rhs>
|
||||
prod(const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
enum {
|
||||
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|
||||
|| OtherDerived::RowsAtCompileTime==Dynamic
|
||||
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
|
||||
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
|
||||
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
|
||||
};
|
||||
// note to the lost user:
|
||||
// * for a dot product use: v1.dot(v2)
|
||||
// * for a coeff-wise product use: v1.cwiseProduct(v2)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
||||
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
||||
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
||||
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
||||
|
||||
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
return Product<Lhs,Rhs>(lhs,rhs);
|
||||
}
|
||||
|
||||
#endif // EIGEN_PRODUCT_H
|
||||
|
@ -69,8 +69,8 @@ void test_evaluators()
|
||||
copy_using_evaluator(d, (a + b).transpose());
|
||||
cout << d << endl;
|
||||
|
||||
// copy_using_evaluator(d, (a * b).transpose());
|
||||
// cout << d << endl;
|
||||
copy_using_evaluator(d, prod(a,b).transpose());
|
||||
cout << d << endl;
|
||||
|
||||
// copy_using_evaluator(d, a.transpose() + (a.transpose() * (b+b)));
|
||||
// cout << d << endl;
|
||||
|
Loading…
Reference in New Issue
Block a user