Add the concept of base class plugins, and started to write the ArrayBase class.

Sorry for this messy commit but I have to commit it...
This commit is contained in:
Gael Guennebaud 2009-11-20 18:20:55 +01:00
parent 4af1753b6f
commit 80ebeae48d
9 changed files with 770 additions and 107 deletions

549
Eigen/src/Array/Array.h Normal file
View File

@ -0,0 +1,549 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
/** \ingroup Array_Module
*
* \class ArrayBase
*
* \brief Base class for all 1D and 2D array, and related expressions
*
* An array is similar to a dense vector or matrix. While matrices are mathematical
* objects with well defined linear algebra operators, an array is just a collection
* of scalar values arranged in a one or two dimensionnal fashion. The main consequence,
* is that all operations applied to an array are performed coefficient wise. Furthermore,
* arays support scalar math functions of the c++ standard library, and convenient
* constructors allowing to easily write generic code working for both scalar values
* and arrays.
*
* This class is the base that is inherited by all array expression types.
*
* \param Derived is the derived type, e.g. an array type, or an expression, etc.
*
* \sa class ArrayBase
*/
template<typename Derived> class ArrayBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef ArrayBase StorageBaseType;
/** Construct the base class type for the derived class OtherDerived */
template <typename OtherDerived> struct MakeBase { typedef ArrayBase<OtherDerived> Type; };
using ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>::operator*;
class InnerIterator;
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
#endif // not EIGEN_PARSED_BY_DOXYGEN
// FIXME A lot of this stuff could be moved to AnyArrayBase, I guess
enum {
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa ArrayBase::rows(), ArrayBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa ArrayBase::rows(), ArrayBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::MaxRowsAtCompileTime,
ei_traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = ei_traits<Derived>::RowsAtCompileTime == 1
|| ei_traits<Derived>::ColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = ei_traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = ei_traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
#ifndef EIGEN_PARSED_BY_DOXYGEN
_HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
#endif
};
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
inline int rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
inline int cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
inline int size() const { return rows() * cols(); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline int nonZeros() const { return size(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
inline bool isVector() const { return rows()==1 || cols()==1; }
/** \returns the size of the storage major dimension,
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
/** \returns the size of the inner dimension according to the storage order,
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(int size)
{
ei_assert(size == this->size()
&& "ArrayBase::resize() does not actually allow to resize.");
}
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(int rows, int cols)
{
ei_assert(rows == this->rows() && cols == this->cols()
&& "ArrayBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
* PlainMatrixType or const PlainMatrixType&.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
/** \internal the column-major plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix!
* The only difference from PlainMatrixType is that PlainMatrixType_ColMajor is guaranteed to be column-major.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType_ColMajor;
/** \internal the return type of coeff()
*/
typedef typename ei_meta_if<_HasDirectAccess, const Scalar&, Scalar>::ret CoeffReturnType;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal expression tyepe of a column */
typedef Block<Derived, ei_traits<Derived>::RowsAtCompileTime, 1> ColXpr;
/** \internal expression tyepe of a column */
typedef Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> RowXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
#include "../Core/CommonCwiseUnaryOps.h"
#include "ArrayCwiseUnaryOps.h"
#include "../Core/CommonCwiseBinaryOps.h"
#include "ArrayCwiseBinaryOps.h"
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const ArrayBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const ArrayBase& other);
template<typename OtherDerived>
Derived& operator=(const AnyArrayBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator+=(const AnyArrayBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator-=(const AnyArrayBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& func);
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const ArrayBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
CommaInitializer<Derived> operator<< (const Scalar& s);
template<typename OtherDerived>
CommaInitializer<Derived> operator<< (const ArrayBase<OtherDerived>& other);
const CoeffReturnType coeff(int row, int col) const;
const CoeffReturnType operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
const CoeffReturnType coeff(int index) const;
const CoeffReturnType operator[](int index) const;
const CoeffReturnType operator()(int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar& operator()(int index);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
void copyCoeff(int row, int col, const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
void copyCoeff(int index, const ArrayBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int row, int col, const ArrayBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int index, const ArrayBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<int LoadMode>
PacketScalar packet(int row, int col) const;
template<int StoreMode>
void writePacket(int row, int col, const PacketScalar& x);
template<int LoadMode>
PacketScalar packet(int index) const;
template<int StoreMode>
void writePacket(int index, const PacketScalar& x);
template<typename OtherDerived>
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const ArrayBase<OtherDerived>& other);
Eigen::Transpose<Derived> transpose();
const Eigen::Transpose<Derived> transpose() const;
void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
template<typename OtherDerived>
Derived& lazyAssign(const Transpose<OtherDerived>& other);
template<typename DerivedA, typename DerivedB>
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,Transpose<DerivedA>,DerivedB>& other);
template<typename DerivedA, typename DerivedB>
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,Transpose<DerivedB> >& other);
template<typename OtherDerived>
Derived& lazyAssign(const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<OtherDerived> > >& other);
template<typename DerivedA, typename DerivedB>
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedA> > >,DerivedB>& other);
template<typename DerivedA, typename DerivedB>
Derived& lazyAssign(const CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerivedA,CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestByValue<Eigen::Transpose<DerivedB> > > >& other);
#endif
RowXpr row(int i);
const RowXpr row(int i) const;
ColXpr col(int i);
const ColXpr col(int i) const;
Minor<Derived> minor(int row, int col);
const Minor<Derived> minor(int row, int col) const;
typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
const typename BlockReturnType<Derived>::Type
block(int startRow, int startCol, int blockRows, int blockCols) const;
VectorBlock<Derived> segment(int start, int size);
const VectorBlock<Derived> segment(int start, int size) const;
VectorBlock<Derived> start(int size);
const VectorBlock<Derived> start(int size) const;
VectorBlock<Derived> end(int size);
const VectorBlock<Derived> end(int size) const;
typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols);
const typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols) const;
template<int BlockRows, int BlockCols>
typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
template<int BlockRows, int BlockCols>
const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
template<int CRows, int CCols>
typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type);
template<int CRows, int CCols>
const typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type) const;
template<int Size> VectorBlock<Derived,Size> start(void);
template<int Size> const VectorBlock<Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<Derived,Size> end() const;
template<int Size> VectorBlock<Derived,Size> segment(int start);
template<int Size> const VectorBlock<Derived,Size> segment(int start) const;
static const ConstantReturnType
Constant(int rows, int cols, const Scalar& value);
static const ConstantReturnType
Constant(int size, const Scalar& value);
static const ConstantReturnType
Constant(const Scalar& value);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int size, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(const CustomNullaryOp& func);
static const ConstantReturnType Zero(int rows, int cols);
static const ConstantReturnType Zero(int size);
static const ConstantReturnType Zero();
static const ConstantReturnType Ones(int rows, int cols);
static const ConstantReturnType Ones(int size);
static const ConstantReturnType Ones();
void fill(const Scalar& value);
Derived& setConstant(const Scalar& value);
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
template<typename OtherDerived>
bool isApprox(const ArrayBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const ArrayBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = precision<Scalar>()) const;
bool isConstant(const Scalar& value, RealScalar prec = precision<Scalar>()) const;
bool isZero(RealScalar prec = precision<Scalar>()) const;
bool isOnes(RealScalar prec = precision<Scalar>()) const;
bool isIdentity(RealScalar prec = precision<Scalar>()) const;
bool isDiagonal(RealScalar prec = precision<Scalar>()) const;
bool isUpperTriangular(RealScalar prec = precision<Scalar>()) const;
bool isLowerTriangular(RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isOrthogonal(const ArrayBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isUnitary(RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
inline bool operator==(const ArrayBase<OtherDerived>& other) const
{ return cwiseEqual(other).all(); }
template<typename OtherDerived>
inline bool operator!=(const ArrayBase<OtherDerived>& other) const
{ return cwiseNotEqual(other).all(); }
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
EIGEN_STRONG_INLINE const typename ei_eval<Derived>::type eval() const
{ return typename ei_eval<Derived>::type(derived()); }
template<typename OtherDerived>
void swap(ArrayBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other);
NoAlias<Derived,Eigen::ArrayBase > noalias();
/** \returns number of elements to skip to pass from one row (resp. column) to another
* for a row-major (resp. column-major) matrix.
* Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
* of the underlying matrix.
*/
inline int stride(void) const { return derived().stride(); }
inline const NestByValue<Derived> nestByValue() const;
Scalar sum() const;
Scalar mean() const;
Scalar trace() const;
Scalar prod() const;
typename ei_traits<Derived>::Scalar minCoeff() const;
typename ei_traits<Derived>::Scalar maxCoeff() const;
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col) const;
typename ei_traits<Derived>::Scalar minCoeff(int* index) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* index) const;
template<typename BinaryOp>
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
#ifndef EIGEN_PARSED_BY_DOXYGEN
using AnyArrayBase<Derived>::derived;
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<ArrayBase*>(this)); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
bool all(void) const;
bool any(void) const;
int count() const;
const VectorwiseOp<Derived,Horizontal> rowwise() const;
VectorwiseOp<Derived,Horizontal> rowwise();
const VectorwiseOp<Derived,Vertical> colwise() const;
VectorwiseOp<Derived,Vertical> colwise();
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int size);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const ArrayBase<ThenDerived>& thenMatrix,
const ArrayBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
select(const ArrayBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const ArrayBase<ElseDerived>& elseMatrix) const;
template<int RowFactor, int ColFactor>
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
const Replicate<Derived,Dynamic,Dynamic> replicate(int rowFacor,int colFactor) const;
Eigen::Reverse<Derived, BothDirections> reverse();
const Eigen::Reverse<Derived, BothDirections> reverse() const;
void reverseInPlace();
#ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN
#endif
protected:
/** Default constructor. Do nothing. */
ArrayBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT(ei_are_flags_consistent<Flags>::ret,
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS)
#endif
}
private:
explicit ArrayBase(int);
ArrayBase(int,int);
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
};
#endif // EIGEN_ARRAYBASE_H

View File

@ -10,4 +10,5 @@ ADD_SUBDIRECTORY(Sparse)
ADD_SUBDIRECTORY(Jacobi)
ADD_SUBDIRECTORY(Householder)
ADD_SUBDIRECTORY(Eigenvalues)
ADD_SUBDIRECTORY(misc)
ADD_SUBDIRECTORY(misc)
ADD_SUBDIRECTORY(plugins)

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
@ -135,7 +135,7 @@ class CwiseBinaryOp : ei_no_assignment_operator,
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
: public MatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
: public Lhs::template MakeBase< CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::Type
{
public:

View File

@ -92,9 +92,12 @@ class CwiseUnaryOp : ei_no_assignment_operator,
const UnaryOp m_functor;
};
// This is the generic implementation for dense storage.
// It can be used for any matrix types implementing the dense concept.
template<typename UnaryOp, typename MatrixType>
class CwiseUnaryOpImpl<UnaryOp,MatrixType,Dense> : public MatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >
{
class CwiseUnaryOpImpl<UnaryOp,MatrixType,Dense>
: public MatrixType::template MakeBase< CwiseUnaryOp<UnaryOp, MatrixType> >::Type
{
const typename ei_cleantype<typename MatrixType::Nested>::type& matrix() const
{ return derived().nestedExpression(); }
typename ei_cleantype<typename MatrixType::Nested>::type& matrix()

View File

@ -61,6 +61,8 @@ template<typename Derived> class MatrixBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef MatrixBase StorageBaseType;
/** Construct the base class type for the derived class OtherDerived */
template <typename OtherDerived> struct MakeBase { typedef MatrixBase<OtherDerived> Type; };
using ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>::operator*;
@ -246,8 +248,10 @@ template<typename Derived> class MatrixBase
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
#include "CwiseUnaryOps.h"
#include "CwiseBinaryOps.h"
#include "../plugins/CommonCwiseUnaryOps.h"
#include "../plugins/MatrixCwiseUnaryOps.h"
#include "../plugins/CommonCwiseBinaryOps.h"
#include "../plugins/MatrixCwiseBinaryOps.h"
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Copies \a other into *this. \returns a reference to *this. */

View File

@ -0,0 +1,73 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// This file is a base class plugin containing common coefficient wise functions.
/** \returns an expression of the difference of \c *this and \a other
*
* \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
*
* \sa class CwiseBinaryOp, MatrixBase::operator-=()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>,
Derived, OtherDerived>
operator-(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
Derived, OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the sum of \c *this and \a other
*
* \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
*
* \sa class CwiseBinaryOp, MatrixBase::operator+=()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
operator+(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
}
/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
*
* The template parameter \a CustomBinaryOp is the type of the functor
* of the custom operator (see class CwiseBinaryOp for an example)
*
* Here is an example illustrating the use of custom functors:
* \include class_CwiseBinaryOp.cpp
* Output: \verbinclude class_CwiseBinaryOp.out
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct
*/
template<typename CustomBinaryOp, typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
binaryExpr(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const
{
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
}

View File

@ -1,3 +1,29 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// This file is a base class plugin containing common coefficient wise functions.
#ifndef EIGEN_PARSED_BY_DOXYGEN
@ -163,59 +189,3 @@ real() { return derived(); }
* \sa real() */
EIGEN_STRONG_INLINE NonConstImagReturnType
imag() { return derived(); }
/** \returns an expression of the coefficient-wise absolute value of \c *this
*
* Example: \include MatrixBase_cwiseAbs.cpp
* Output: \verbinclude MatrixBase_cwiseAbs.out
*
* \sa cwiseAbs2()
*/
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_abs_op<Scalar>,Derived>
cwiseAbs() const { return derived(); }
/** \returns an expression of the coefficient-wise squared absolute value of \c *this
*
* Example: \include MatrixBase_cwiseAbs2.cpp
* Output: \verbinclude MatrixBase_cwiseAbs2.out
*
* \sa cwiseAbs()
*/
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_abs2_op<Scalar>,Derived>
cwiseAbs2() const { return derived(); }
/** \returns an expression of the coefficient-wise square root of *this.
*
* Example: \include MatrixBase_cwiseSqrt.cpp
* Output: \verbinclude MatrixBase_cwiseSqrt.out
*
* \sa cwisePow(), cwiseSquare()
*/
inline const CwiseUnaryOp<ei_scalar_sqrt_op<Scalar>,Derived>
cwiseSqrt() const { return derived(); }
/** \returns an expression of the coefficient-wise inverse of *this.
*
* Example: \include MatrixBase_cwiseInverse.cpp
* Output: \verbinclude MatrixBase_cwiseInverse.out
*
* \sa cwiseProduct()
*/
inline const CwiseUnaryOp<ei_scalar_inverse_op<Scalar>,Derived>
cwiseInverse() const { return derived(); }
/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
* MatrixBase::isMuchSmallerThan().
*
* \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
*/
inline const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,Derived>
cwiseEqual(Scalar s) const
{
return CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,Derived>
(derived(), std::bind1st(std::equal_to<Scalar>(), s));
}

View File

@ -1,48 +1,29 @@
/** \returns an expression of the difference of \c *this and \a other
*
* \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
*
* \sa class CwiseBinaryOp, MatrixBase::operator-=()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>,
Derived, OtherDerived>
operator-(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
Derived, OtherDerived>(derived(), other.derived());
}
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
/** \returns an expression of the sum of \c *this and \a other
*
* \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
*
* \sa class CwiseBinaryOp, MatrixBase::operator+=()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
operator+(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
}
/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
*
* The template parameter \a CustomBinaryOp is the type of the functor
* of the custom operator (see class CwiseBinaryOp for an example)
*
* Here is an example illustrating the use of custom functors:
* \include class_CwiseBinaryOp.cpp
* Output: \verbinclude class_CwiseBinaryOp.out
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, MatrixBase::cwiseProduct
*/
template<typename CustomBinaryOp, typename OtherDerived>
EIGEN_STRONG_INLINE const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
binaryExpr(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const
{
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
}
// This file is a base class plugin containing matrix specifics coefficient wise functions.
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
*

View File

@ -0,0 +1,82 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// This file is a base class plugin containing matrix specifics coefficient wise functions.
/** \returns an expression of the coefficient-wise absolute value of \c *this
*
* Example: \include MatrixBase_cwiseAbs.cpp
* Output: \verbinclude MatrixBase_cwiseAbs.out
*
* \sa cwiseAbs2()
*/
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_abs_op<Scalar>,Derived>
cwiseAbs() const { return derived(); }
/** \returns an expression of the coefficient-wise squared absolute value of \c *this
*
* Example: \include MatrixBase_cwiseAbs2.cpp
* Output: \verbinclude MatrixBase_cwiseAbs2.out
*
* \sa cwiseAbs()
*/
EIGEN_STRONG_INLINE const CwiseUnaryOp<ei_scalar_abs2_op<Scalar>,Derived>
cwiseAbs2() const { return derived(); }
/** \returns an expression of the coefficient-wise square root of *this.
*
* Example: \include MatrixBase_cwiseSqrt.cpp
* Output: \verbinclude MatrixBase_cwiseSqrt.out
*
* \sa cwisePow(), cwiseSquare()
*/
inline const CwiseUnaryOp<ei_scalar_sqrt_op<Scalar>,Derived>
cwiseSqrt() const { return derived(); }
/** \returns an expression of the coefficient-wise inverse of *this.
*
* Example: \include MatrixBase_cwiseInverse.cpp
* Output: \verbinclude MatrixBase_cwiseInverse.out
*
* \sa cwiseProduct()
*/
inline const CwiseUnaryOp<ei_scalar_inverse_op<Scalar>,Derived>
cwiseInverse() const { return derived(); }
/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
* generally a far better idea to use a fuzzy comparison as provided by MatrixBase::isApprox() and
* MatrixBase::isMuchSmallerThan().
*
* \sa cwiseEqual(const MatrixBase<OtherDerived> &) const
*/
inline const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,Derived>
cwiseEqual(Scalar s) const
{
return CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >,Derived>
(derived(), std::bind1st(std::equal_to<Scalar>(), s));
}