wrapper for lmdif (+test call eigenization)

This commit is contained in:
Thomas Capricelli 2009-08-10 16:54:53 +02:00
parent 4a26baa718
commit 80372c18ee
2 changed files with 104 additions and 70 deletions

View File

@ -220,5 +220,51 @@ int ei_lmder(
);
}
template<typename Functor, typename Scalar>
int ei_lmdif(
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &x,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &fvec,
int &nfev,
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &fjac,
VectorXi &ipvt,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &wa1,
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &diag,
int mode=1,
double factor = 100.,
int maxfev = 400,
Scalar ftol = Eigen::ei_sqrt(Eigen::machine_epsilon<Scalar>()),
Scalar xtol = Eigen::ei_sqrt(Eigen::machine_epsilon<Scalar>()),
Scalar gtol = Scalar(0.),
Scalar epsfcn = Scalar(0.),
int nprint=0
)
{
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
qtf(x.size()),
wa2(x.size()), wa3(x.size()),
wa4(fvec.size());
int ldfjac = fvec.size();
ipvt.resize(x.size());
wa1.resize(x.size());
fjac.resize(ldfjac, x.size());
diag.resize(x.size());
return lmdif (
Functor::f, 0,
fvec.size(), x.size(), x.data(), fvec.data(),
ftol, xtol, gtol,
maxfev,
epsfcn,
diag.data(), mode,
factor,
nprint,
&nfev,
fjac.data() , ldfjac,
ipvt.data(),
qtf.data(),
wa1.data(), wa2.data(), wa3.data(), wa4.data()
);
}
#endif // EIGEN_NONLINEAR_MATHFUNCTIONS_H

View File

@ -739,92 +739,80 @@ void testLmdif1()
}
int fcn_lmdif(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int iflag)
{
/* subroutine fcn for lmdif example. */
int i;
double tmp1, tmp2, tmp3;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag == 0)
struct lmdif_functor {
static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int iflag)
{
/* insert print statements here when nprint is positive. */
return 0;
/* subroutine fcn for lmdif example. */
int i;
double tmp1, tmp2, tmp3;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
if (iflag == 0)
{
/* insert print statements here when nprint is positive. */
return 0;
}
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
return 0;
}
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
return 0;
}
};
void testLmdif()
{
int i, j, m, n, maxfev, mode, nprint, info, nfev, ldfjac;
int ipvt[3];
double ftol, xtol, gtol, epsfcn, factor, fnorm;
double x[3], fvec[15], diag[3], fjac[15*3], qtf[3],
wa1[3], wa2[3], wa3[3], wa4[15];
double covfac;
const int m=15, n=3;
int info, nfev;
double fnorm, covfac, covar_ftol;
Eigen::VectorXd x(n), fvec(m), diag(n), wa1;
Eigen::MatrixXd fjac;
VectorXi ipvt;
m = 15;
n = 3;
/* the following starting values provide a rough fit. */
x.setConstant(n, 1.);
/* the following starting values provide a rough fit. */
// do the computation
info = ei_lmdif<lmdif_functor, double>(x, fvec, nfev, fjac, ipvt, wa1, diag);
x[1-1] = 1.;
x[2-1] = 1.;
x[3-1] = 1.;
ldfjac = 15;
/* set ftol and xtol to the square root of the machine */
/* and gtol to zero. unless high solutions are */
/* required, these are the recommended settings. */
ftol = sqrt(dpmpar(1));
xtol = sqrt(dpmpar(1));
gtol = 0.;
maxfev = 800;
epsfcn = 0.;
mode = 1;
factor = 1.e2;
nprint = 0;
info = lmdif(fcn_lmdif, 0, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn,
diag, mode, factor, nprint, &nfev, fjac, ldfjac,
ipvt, qtf, wa1, wa2, wa3, wa4);
fnorm = enorm(m, fvec);
VERIFY_IS_APPROX(fnorm, 0.09063596);
// check return values
VERIFY( 1 == info);
VERIFY(nfev==21);
VERIFY(info==1);
double x_ref[] = {0.08241058, 1.133037, 2.343695 };
for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
// check norm
fnorm = fvec.norm();
VERIFY_IS_APPROX(fnorm, 0.09063596);
ftol = dpmpar(1);
// check x
VectorXd x_ref(n);
x_ref << 0.08241058, 1.133037, 2.343695;
VERIFY_IS_APPROX(x, x_ref);
// check covariance
covar_ftol = dpmpar(1);
covfac = fnorm*fnorm/(m-n);
covar(n, fjac, ldfjac, ipvt, ftol, wa1);
covar(n, fjac.data(), m, ipvt.data(), covar_ftol, wa1.data());
double cov_ref[] = {
Eigen::MatrixXd cov_ref(n,n);
cov_ref <<
0.0001531202, 0.002869942, -0.002656662,
0.002869942, 0.09480937, -0.09098997,
-0.002656662, -0.09098997, 0.08778729
};
-0.002656662, -0.09098997, 0.08778729;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
VERIFY_IS_APPROX(fjac[(i-1)*ldfjac+j-1]*covfac, cov_ref[(i-1)*3+(j-1)]);
// std::cout << fjac*covfac << std::endl;
Eigen::MatrixXd cov;
cov = covfac*fjac.corner<n,n>(TopLeft);
VERIFY_IS_APPROX( cov, cov_ref);
// TODO: why isn't this allowed ? :
// VERIFY_IS_APPROX( covfac*fjac.corner<n,n>(TopLeft) , cov_ref);
}
struct misra1a_functor {