mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
Migrate JacobiSVD to Solver
This commit is contained in:
parent
082f7ddc37
commit
7eefdb948c
@ -702,8 +702,8 @@ struct image_retval<FullPivLU<_MatrixType> >
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename _MatrixType>
|
||||
template<typename RhsType, typename DstType>
|
||||
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const {
|
||||
|
||||
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
|
||||
* So we proceed as follows:
|
||||
* Step 1: compute c = P * rhs.
|
||||
|
@ -653,6 +653,16 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
#ifdef EIGEN_TEST_EVALUATORS
|
||||
template<typename Rhs>
|
||||
inline const Solve<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return Solve<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
#else
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
@ -661,6 +671,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
@ -735,6 +746,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename RhsType, typename DstType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void _solve_impl(const RhsType &rhs, DstType &dst) const;
|
||||
#endif
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
@ -912,7 +929,27 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
return *this;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
template<typename RhsType, typename DstType>
|
||||
void JacobiSVD<_MatrixType,QRPreconditioner>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
eigen_assert(rhs.rows() == rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
|
||||
Index l_rank = rank();
|
||||
|
||||
tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
|
||||
tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
|
||||
dst = m_matrixV.leftCols(l_rank) * tmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace internal {
|
||||
#ifndef EIGEN_TEST_EVALUATORS
|
||||
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
@ -922,19 +959,10 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(rhs().rows() == dec().rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
||||
Index rank = dec().rank();
|
||||
|
||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
||||
dec()._solve_impl(rhs(), dst);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
} // end namespace internal
|
||||
|
||||
#ifndef __CUDACC__
|
||||
|
Loading…
Reference in New Issue
Block a user