mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
add initial, rough, full-pivoting RRQR decomposition
lots of room for improvement! and add Gael a (c) line in Householder.h
This commit is contained in:
parent
ef582933c1
commit
7bedf5e9cb
1
Eigen/QR
1
Eigen/QR
@ -36,6 +36,7 @@ namespace Eigen {
|
|||||||
*/
|
*/
|
||||||
|
|
||||||
#include "src/QR/QR.h"
|
#include "src/QR/QR.h"
|
||||||
|
#include "src/QR/RRQR.h"
|
||||||
#include "src/QR/Tridiagonalization.h"
|
#include "src/QR/Tridiagonalization.h"
|
||||||
#include "src/QR/EigenSolver.h"
|
#include "src/QR/EigenSolver.h"
|
||||||
#include "src/QR/SelfAdjointEigenSolver.h"
|
#include "src/QR/SelfAdjointEigenSolver.h"
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||||
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
||||||
//
|
//
|
||||||
// Eigen is free software; you can redistribute it and/or
|
// Eigen is free software; you can redistribute it and/or
|
||||||
// modify it under the terms of the GNU Lesser General Public
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||||
//
|
//
|
||||||
// Eigen is free software; you can redistribute it and/or
|
// Eigen is free software; you can redistribute it and/or
|
||||||
// modify it under the terms of the GNU Lesser General Public
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
@ -39,7 +39,7 @@
|
|||||||
*
|
*
|
||||||
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
|
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
|
||||||
*
|
*
|
||||||
* \sa MatrixBase::qr()
|
* \sa MatrixBase::householderQr()
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType> class HouseholderQR
|
template<typename MatrixType> class HouseholderQR
|
||||||
{
|
{
|
||||||
@ -54,6 +54,7 @@ template<typename MatrixType> class HouseholderQR
|
|||||||
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
|
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
|
||||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||||
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
|
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
|
||||||
|
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Default Constructor.
|
* \brief Default Constructor.
|
||||||
@ -125,12 +126,12 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType&
|
|||||||
m_qr = matrix;
|
m_qr = matrix;
|
||||||
m_hCoeffs.resize(size);
|
m_hCoeffs.resize(size);
|
||||||
|
|
||||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
RowVectorType temp(cols);
|
||||||
|
|
||||||
for (int k = 0; k < size; ++k)
|
for (int k = 0; k < size; ++k)
|
||||||
{
|
{
|
||||||
int remainingRows = rows - k;
|
int remainingRows = rows - k;
|
||||||
int remainingCols = cols - k -1;
|
int remainingCols = cols - k - 1;
|
||||||
|
|
||||||
RealScalar beta;
|
RealScalar beta;
|
||||||
m_qr.col(k).end(remainingRows).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
|
m_qr.col(k).end(remainingRows).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
|
||||||
|
286
Eigen/src/QR/RRQR.h
Normal file
286
Eigen/src/QR/RRQR.h
Normal file
@ -0,0 +1,286 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_RRQR_H
|
||||||
|
#define EIGEN_RRQR_H
|
||||||
|
|
||||||
|
/** \ingroup QR_Module
|
||||||
|
* \nonstableyet
|
||||||
|
*
|
||||||
|
* \class HouseholderRRQR
|
||||||
|
*
|
||||||
|
* \brief Householder rank-revealing QR decomposition of a matrix
|
||||||
|
*
|
||||||
|
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
|
||||||
|
*
|
||||||
|
* This class performs a rank-revealing QR decomposition using Householder transformations.
|
||||||
|
*
|
||||||
|
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
|
||||||
|
* numerical stability.
|
||||||
|
*
|
||||||
|
* \sa MatrixBase::householderRrqr()
|
||||||
|
*/
|
||||||
|
template<typename MatrixType> class HouseholderRRQR
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
enum {
|
||||||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||||
|
Options = MatrixType::Options,
|
||||||
|
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||||
|
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||||
|
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
|
||||||
|
typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
|
||||||
|
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||||
|
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* \brief Default Constructor.
|
||||||
|
*
|
||||||
|
* The default constructor is useful in cases in which the user intends to
|
||||||
|
* perform decompositions via HouseholderRRQR::compute(const MatrixType&).
|
||||||
|
*/
|
||||||
|
HouseholderRRQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
|
||||||
|
|
||||||
|
HouseholderRRQR(const MatrixType& matrix)
|
||||||
|
: m_qr(matrix.rows(), matrix.cols()),
|
||||||
|
m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
|
||||||
|
m_isInitialized(false)
|
||||||
|
{
|
||||||
|
compute(matrix);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||||
|
* *this is the QR decomposition, if any exists.
|
||||||
|
*
|
||||||
|
* \param b the right-hand-side of the equation to solve.
|
||||||
|
*
|
||||||
|
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
|
||||||
|
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
|
||||||
|
* If no solution exists, *result is left with undefined coefficients.
|
||||||
|
*
|
||||||
|
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||||
|
* code is space inefficient.
|
||||||
|
*
|
||||||
|
* Example: \include HouseholderRRQR_solve.cpp
|
||||||
|
* Output: \verbinclude HouseholderRRQR_solve.out
|
||||||
|
*/
|
||||||
|
template<typename OtherDerived, typename ResultType>
|
||||||
|
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||||
|
|
||||||
|
MatrixType matrixQ(void) const;
|
||||||
|
|
||||||
|
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||||
|
*/
|
||||||
|
const MatrixType& matrixQR() const { return m_qr; }
|
||||||
|
|
||||||
|
HouseholderRRQR& compute(const MatrixType& matrix);
|
||||||
|
|
||||||
|
const IntRowVectorType& colsPermutation() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "RRQR is not initialized.");
|
||||||
|
return m_cols_permutation;
|
||||||
|
}
|
||||||
|
|
||||||
|
const IntColVectorType& rowsTranspositions() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "RRQR is not initialized.");
|
||||||
|
return m_rows_transpositions;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline int rank() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "RRQR is not initialized.");
|
||||||
|
return m_rank;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
MatrixType m_qr;
|
||||||
|
HCoeffsType m_hCoeffs;
|
||||||
|
IntColVectorType m_rows_transpositions;
|
||||||
|
IntRowVectorType m_cols_permutation;
|
||||||
|
bool m_isInitialized;
|
||||||
|
RealScalar m_precision;
|
||||||
|
int m_rank;
|
||||||
|
int m_det_pq;
|
||||||
|
};
|
||||||
|
|
||||||
|
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
HouseholderRRQR<MatrixType>& HouseholderRRQR<MatrixType>::compute(const MatrixType& matrix)
|
||||||
|
{
|
||||||
|
int rows = matrix.rows();
|
||||||
|
int cols = matrix.cols();
|
||||||
|
int size = std::min(rows,cols);
|
||||||
|
m_rank = size;
|
||||||
|
|
||||||
|
m_qr = matrix;
|
||||||
|
m_hCoeffs.resize(size);
|
||||||
|
|
||||||
|
RowVectorType temp(cols);
|
||||||
|
|
||||||
|
// TODO: experiment to see the best formula
|
||||||
|
m_precision = epsilon<Scalar>() * size;
|
||||||
|
|
||||||
|
m_rows_transpositions.resize(matrix.rows());
|
||||||
|
IntRowVectorType cols_transpositions(matrix.cols());
|
||||||
|
m_cols_permutation.resize(matrix.cols());
|
||||||
|
int number_of_transpositions = 0;
|
||||||
|
|
||||||
|
RealScalar biggest;
|
||||||
|
|
||||||
|
for (int k = 0; k < size; ++k)
|
||||||
|
{
|
||||||
|
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
||||||
|
RealScalar biggest_in_corner;
|
||||||
|
|
||||||
|
biggest_in_corner = m_qr.corner(Eigen::BottomRight, rows-k, cols-k)
|
||||||
|
.cwise().abs()
|
||||||
|
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
|
||||||
|
row_of_biggest_in_corner += k;
|
||||||
|
col_of_biggest_in_corner += k;
|
||||||
|
if(k==0) biggest = biggest_in_corner;
|
||||||
|
|
||||||
|
// if the corner is negligible, then we have less than full rank, and we can finish early
|
||||||
|
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
|
||||||
|
{
|
||||||
|
m_rank = k;
|
||||||
|
for(int i = k; i < size; i++)
|
||||||
|
{
|
||||||
|
m_rows_transpositions.coeffRef(i) = i;
|
||||||
|
cols_transpositions.coeffRef(i) = i;
|
||||||
|
m_hCoeffs.coeffRef(i) = Scalar(0);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
|
||||||
|
cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
|
||||||
|
if(k != row_of_biggest_in_corner) {
|
||||||
|
m_qr.row(k).end(cols-k).swap(m_qr.row(row_of_biggest_in_corner).end(cols-k));
|
||||||
|
++number_of_transpositions;
|
||||||
|
}
|
||||||
|
if(k != col_of_biggest_in_corner) {
|
||||||
|
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
|
||||||
|
++number_of_transpositions;
|
||||||
|
}
|
||||||
|
|
||||||
|
RealScalar beta;
|
||||||
|
m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
|
||||||
|
m_qr.coeffRef(k,k) = beta;
|
||||||
|
|
||||||
|
// apply H to remaining part of m_qr from the left
|
||||||
|
m_qr.corner(BottomRight, rows-k, cols-k-1)
|
||||||
|
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k;
|
||||||
|
for(int k = 0; k < size; ++k)
|
||||||
|
std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k)));
|
||||||
|
|
||||||
|
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
|
||||||
|
m_isInitialized = true;
|
||||||
|
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
template<typename OtherDerived, typename ResultType>
|
||||||
|
void HouseholderRRQR<MatrixType>::solve(
|
||||||
|
const MatrixBase<OtherDerived>& b,
|
||||||
|
ResultType *result
|
||||||
|
) const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "HouseholderRRQR is not initialized.");
|
||||||
|
const int rows = m_qr.rows();
|
||||||
|
const int cols = b.cols();
|
||||||
|
ei_assert(b.rows() == rows);
|
||||||
|
|
||||||
|
typename OtherDerived::PlainMatrixType c(b);
|
||||||
|
|
||||||
|
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||||
|
for (int k = 0; k < m_rank; ++k)
|
||||||
|
{
|
||||||
|
int remainingSize = rows-k;
|
||||||
|
c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
|
||||||
|
c.corner(BottomRight, remainingSize, cols)
|
||||||
|
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
|
||||||
|
}
|
||||||
|
|
||||||
|
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||||
|
.template triangularView<UpperTriangular>()
|
||||||
|
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||||
|
|
||||||
|
result->resize(m_qr.cols(), b.cols());
|
||||||
|
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
|
||||||
|
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \returns the matrix Q */
|
||||||
|
template<typename MatrixType>
|
||||||
|
MatrixType HouseholderRRQR<MatrixType>::matrixQ() const
|
||||||
|
{
|
||||||
|
ei_assert(m_isInitialized && "HouseholderRRQR is not initialized.");
|
||||||
|
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||||
|
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
|
||||||
|
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||||
|
int rows = m_qr.rows();
|
||||||
|
int cols = m_qr.cols();
|
||||||
|
int size = std::min(rows,cols);
|
||||||
|
MatrixType res = MatrixType::Identity(rows, rows);
|
||||||
|
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||||
|
for (int k = size-1; k >= 0; k--)
|
||||||
|
{
|
||||||
|
res.block(k, k, rows-k, rows-k)
|
||||||
|
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||||
|
res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_HIDE_HEAVY_CODE
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
/** \return the Householder QR decomposition of \c *this.
|
||||||
|
*
|
||||||
|
* \sa class HouseholderRRQR
|
||||||
|
*/
|
||||||
|
template<typename Derived>
|
||||||
|
const HouseholderRRQR<typename MatrixBase<Derived>::PlainMatrixType>
|
||||||
|
MatrixBase<Derived>::householderQr() const
|
||||||
|
{
|
||||||
|
return HouseholderRRQR<PlainMatrixType>(eval());
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
#endif // EIGEN_QR_H
|
@ -121,6 +121,7 @@ ei_add_test(lu ${EI_OFLAG})
|
|||||||
ei_add_test(determinant)
|
ei_add_test(determinant)
|
||||||
ei_add_test(inverse ${EI_OFLAG})
|
ei_add_test(inverse ${EI_OFLAG})
|
||||||
ei_add_test(qr)
|
ei_add_test(qr)
|
||||||
|
ei_add_test(rrqr)
|
||||||
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
||||||
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
||||||
ei_add_test(svd)
|
ei_add_test(svd)
|
||||||
|
116
test/rrqr.cpp
Normal file
116
test/rrqr.cpp
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
#include <Eigen/QR>
|
||||||
|
|
||||||
|
template<typename MatrixType> void qr()
|
||||||
|
{
|
||||||
|
/* this test covers the following files: QR.h */
|
||||||
|
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
||||||
|
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||||
|
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
||||||
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||||
|
MatrixType m1;
|
||||||
|
createRandomMatrixOfRank(rank,rows,cols,m1);
|
||||||
|
HouseholderRRQR<MatrixType> qr(m1);
|
||||||
|
VERIFY_IS_APPROX(rank, qr.rank());
|
||||||
|
|
||||||
|
MatrixType r = qr.matrixQR();
|
||||||
|
// FIXME need better way to construct trapezoid
|
||||||
|
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||||
|
|
||||||
|
MatrixType b = qr.matrixQ() * r;
|
||||||
|
|
||||||
|
MatrixType c = MatrixType::Zero(rows,cols);
|
||||||
|
|
||||||
|
for(int i = 0; i < cols; ++i) c.col(qr.colsPermutation().coeff(i)) = b.col(i);
|
||||||
|
VERIFY_IS_APPROX(m1, c);
|
||||||
|
|
||||||
|
MatrixType m2 = MatrixType::Random(cols,cols2);
|
||||||
|
MatrixType m3 = m1*m2;
|
||||||
|
m2 = MatrixType::Random(cols,cols2);
|
||||||
|
qr.solve(m3, &m2);
|
||||||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void qr_invertible()
|
||||||
|
{
|
||||||
|
/* this test covers the following files: RRQR.h */
|
||||||
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||||
|
int size = ei_random<int>(10,50);
|
||||||
|
|
||||||
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||||
|
m1 = MatrixType::Random(size,size);
|
||||||
|
|
||||||
|
if (ei_is_same_type<RealScalar,float>::ret)
|
||||||
|
{
|
||||||
|
// let's build a matrix more stable to inverse
|
||||||
|
MatrixType a = MatrixType::Random(size,size*2);
|
||||||
|
m1 += a * a.adjoint();
|
||||||
|
}
|
||||||
|
|
||||||
|
HouseholderRRQR<MatrixType> qr(m1);
|
||||||
|
m3 = MatrixType::Random(size,size);
|
||||||
|
qr.solve(m3, &m2);
|
||||||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void qr_verify_assert()
|
||||||
|
{
|
||||||
|
MatrixType tmp;
|
||||||
|
|
||||||
|
HouseholderRRQR<MatrixType> qr;
|
||||||
|
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||||
|
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||||
|
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_rrqr()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < 1; i++) {
|
||||||
|
// FIXME : very weird bug here
|
||||||
|
// CALL_SUBTEST( qr(Matrix2f()) );
|
||||||
|
CALL_SUBTEST( qr<MatrixXf>() );
|
||||||
|
CALL_SUBTEST( qr<MatrixXd>() );
|
||||||
|
CALL_SUBTEST( qr<MatrixXcd>() );
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( qr_invertible<MatrixXf>() );
|
||||||
|
CALL_SUBTEST( qr_invertible<MatrixXd>() );
|
||||||
|
CALL_SUBTEST( qr_invertible<MatrixXcf>() );
|
||||||
|
CALL_SUBTEST( qr_invertible<MatrixXcd>() );
|
||||||
|
}
|
||||||
|
|
||||||
|
CALL_SUBTEST(qr_verify_assert<Matrix3f>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<Matrix3d>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXf>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXd>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXcf>());
|
||||||
|
CALL_SUBTEST(qr_verify_assert<MatrixXcd>());
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user