add initial, rough, full-pivoting RRQR decomposition

lots of room for improvement!
and add Gael a (c) line in Householder.h
This commit is contained in:
Benoit Jacob 2009-08-22 01:13:21 -04:00
parent ef582933c1
commit 7bedf5e9cb
6 changed files with 410 additions and 4 deletions

View File

@ -36,6 +36,7 @@ namespace Eigen {
*/ */
#include "src/QR/QR.h" #include "src/QR/QR.h"
#include "src/QR/RRQR.h"
#include "src/QR/Tridiagonalization.h" #include "src/QR/Tridiagonalization.h"
#include "src/QR/EigenSolver.h" #include "src/QR/EigenSolver.h"
#include "src/QR/SelfAdjointEigenSolver.h" #include "src/QR/SelfAdjointEigenSolver.h"

View File

@ -2,6 +2,7 @@
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public // modify it under the terms of the GNU Lesser General Public

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public // modify it under the terms of the GNU Lesser General Public
@ -39,7 +39,7 @@
* *
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition. * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
* *
* \sa MatrixBase::qr() * \sa MatrixBase::householderQr()
*/ */
template<typename MatrixType> class HouseholderQR template<typename MatrixType> class HouseholderQR
{ {
@ -54,6 +54,7 @@ template<typename MatrixType> class HouseholderQR
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType; typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType; typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
/** /**
* \brief Default Constructor. * \brief Default Constructor.
@ -125,12 +126,12 @@ HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType&
m_qr = matrix; m_qr = matrix;
m_hCoeffs.resize(size); m_hCoeffs.resize(size);
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols); RowVectorType temp(cols);
for (int k = 0; k < size; ++k) for (int k = 0; k < size; ++k)
{ {
int remainingRows = rows - k; int remainingRows = rows - k;
int remainingCols = cols - k -1; int remainingCols = cols - k - 1;
RealScalar beta; RealScalar beta;
m_qr.col(k).end(remainingRows).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta); m_qr.col(k).end(remainingRows).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);

286
Eigen/src/QR/RRQR.h Normal file
View File

@ -0,0 +1,286 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_RRQR_H
#define EIGEN_RRQR_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class HouseholderRRQR
*
* \brief Householder rank-revealing QR decomposition of a matrix
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
* numerical stability.
*
* \sa MatrixBase::householderRrqr()
*/
template<typename MatrixType> class HouseholderRRQR
{
public:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via HouseholderRRQR::compute(const MatrixType&).
*/
HouseholderRRQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
HouseholderRRQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
m_isInitialized(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
* If no solution exists, *result is left with undefined coefficients.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* Example: \include HouseholderRRQR_solve.cpp
* Output: \verbinclude HouseholderRRQR_solve.out
*/
template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const { return m_qr; }
HouseholderRRQR& compute(const MatrixType& matrix);
const IntRowVectorType& colsPermutation() const
{
ei_assert(m_isInitialized && "RRQR is not initialized.");
return m_cols_permutation;
}
const IntColVectorType& rowsTranspositions() const
{
ei_assert(m_isInitialized && "RRQR is not initialized.");
return m_rows_transpositions;
}
inline int rank() const
{
ei_assert(m_isInitialized && "RRQR is not initialized.");
return m_rank;
}
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
IntColVectorType m_rows_transpositions;
IntRowVectorType m_cols_permutation;
bool m_isInitialized;
RealScalar m_precision;
int m_rank;
int m_det_pq;
};
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
HouseholderRRQR<MatrixType>& HouseholderRRQR<MatrixType>::compute(const MatrixType& matrix)
{
int rows = matrix.rows();
int cols = matrix.cols();
int size = std::min(rows,cols);
m_rank = size;
m_qr = matrix;
m_hCoeffs.resize(size);
RowVectorType temp(cols);
// TODO: experiment to see the best formula
m_precision = epsilon<Scalar>() * size;
m_rows_transpositions.resize(matrix.rows());
IntRowVectorType cols_transpositions(matrix.cols());
m_cols_permutation.resize(matrix.cols());
int number_of_transpositions = 0;
RealScalar biggest;
for (int k = 0; k < size; ++k)
{
int row_of_biggest_in_corner, col_of_biggest_in_corner;
RealScalar biggest_in_corner;
biggest_in_corner = m_qr.corner(Eigen::BottomRight, rows-k, cols-k)
.cwise().abs()
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k;
col_of_biggest_in_corner += k;
if(k==0) biggest = biggest_in_corner;
// if the corner is negligible, then we have less than full rank, and we can finish early
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
{
m_rank = k;
for(int i = k; i < size; i++)
{
m_rows_transpositions.coeffRef(i) = i;
cols_transpositions.coeffRef(i) = i;
m_hCoeffs.coeffRef(i) = Scalar(0);
}
break;
}
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
if(k != row_of_biggest_in_corner) {
m_qr.row(k).end(cols-k).swap(m_qr.row(row_of_biggest_in_corner).end(cols-k));
++number_of_transpositions;
}
if(k != col_of_biggest_in_corner) {
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
++number_of_transpositions;
}
RealScalar beta;
m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
m_qr.coeffRef(k,k) = beta;
// apply H to remaining part of m_qr from the left
m_qr.corner(BottomRight, rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
}
for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k;
for(int k = 0; k < size; ++k)
std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
return *this;
}
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
void HouseholderRRQR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
ei_assert(m_isInitialized && "HouseholderRRQR is not initialized.");
const int rows = m_qr.rows();
const int cols = b.cols();
ei_assert(b.rows() == rows);
typename OtherDerived::PlainMatrixType c(b);
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
for (int k = 0; k < m_rank; ++k)
{
int remainingSize = rows-k;
c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
c.corner(BottomRight, remainingSize, cols)
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
}
m_qr.corner(TopLeft, m_rank, m_rank)
.template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
result->resize(m_qr.cols(), b.cols());
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
}
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType HouseholderRRQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "HouseholderRRQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int rows = m_qr.rows();
int cols = m_qr.cols();
int size = std::min(rows,cols);
MatrixType res = MatrixType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{
res.block(k, k, rows-k, rows-k)
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
}
return res;
}
#endif // EIGEN_HIDE_HEAVY_CODE
#if 0
/** \return the Householder QR decomposition of \c *this.
*
* \sa class HouseholderRRQR
*/
template<typename Derived>
const HouseholderRRQR<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::householderQr() const
{
return HouseholderRRQR<PlainMatrixType>(eval());
}
#endif
#endif // EIGEN_QR_H

View File

@ -121,6 +121,7 @@ ei_add_test(lu ${EI_OFLAG})
ei_add_test(determinant) ei_add_test(determinant)
ei_add_test(inverse ${EI_OFLAG}) ei_add_test(inverse ${EI_OFLAG})
ei_add_test(qr) ei_add_test(qr)
ei_add_test(rrqr)
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}") ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}") ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
ei_add_test(svd) ei_add_test(svd)

116
test/rrqr.cpp Normal file
View File

@ -0,0 +1,116 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/QR>
template<typename MatrixType> void qr()
{
/* this test covers the following files: QR.h */
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType m1;
createRandomMatrixOfRank(rank,rows,cols,m1);
HouseholderRRQR<MatrixType> qr(m1);
VERIFY_IS_APPROX(rank, qr.rank());
MatrixType r = qr.matrixQR();
// FIXME need better way to construct trapezoid
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
MatrixType b = qr.matrixQ() * r;
MatrixType c = MatrixType::Zero(rows,cols);
for(int i = 0; i < cols; ++i) c.col(qr.colsPermutation().coeff(i)) = b.col(i);
VERIFY_IS_APPROX(m1, c);
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
qr.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType> void qr_invertible()
{
/* this test covers the following files: RRQR.h */
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
int size = ei_random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (ei_is_same_type<RealScalar,float>::ret)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
HouseholderRRQR<MatrixType> qr(m1);
m3 = MatrixType::Random(size,size);
qr.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
HouseholderRRQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixR())
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(qr.matrixQ())
}
void test_rrqr()
{
for(int i = 0; i < 1; i++) {
// FIXME : very weird bug here
// CALL_SUBTEST( qr(Matrix2f()) );
CALL_SUBTEST( qr<MatrixXf>() );
CALL_SUBTEST( qr<MatrixXd>() );
CALL_SUBTEST( qr<MatrixXcd>() );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( qr_invertible<MatrixXf>() );
CALL_SUBTEST( qr_invertible<MatrixXd>() );
CALL_SUBTEST( qr_invertible<MatrixXcf>() );
CALL_SUBTEST( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST(qr_verify_assert<Matrix3f>());
CALL_SUBTEST(qr_verify_assert<Matrix3d>());
CALL_SUBTEST(qr_verify_assert<MatrixXf>());
CALL_SUBTEST(qr_verify_assert<MatrixXd>());
CALL_SUBTEST(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST(qr_verify_assert<MatrixXcd>());
}