mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
port ei_rwupdt to c++, and misc cleaning
This commit is contained in:
parent
e97529c2e3
commit
7ba9dc07ed
@ -289,7 +289,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
if (mode != 2)
|
||||
diag = diag.cwiseMax(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
do {
|
||||
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
@ -374,9 +373,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
return XtolTooSmall;
|
||||
if (gnorm <= epsilon<Scalar>())
|
||||
return GtolTooSmall;
|
||||
/* end of the inner loop. repeat if iteration unsuccessful. */
|
||||
|
||||
} while (ratio < Scalar(1e-4));
|
||||
/* end of the outer loop. */
|
||||
|
||||
return Running;
|
||||
}
|
||||
|
||||
@ -468,7 +467,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
int rownb = 2;
|
||||
for (i = 0; i < m; ++i) {
|
||||
if (functor.df(x, wa3, rownb) < 0) return UserAsked;
|
||||
ei_rwupdt<Scalar>(n, fjac.data(), fjac.rows(), wa3.data(), qtf.data(), fvec[i]);
|
||||
ei_rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
|
||||
++rownb;
|
||||
}
|
||||
++njev;
|
||||
@ -485,7 +484,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
if (sing) {
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
// TODO We have no unit test covering this code path, do not modify
|
||||
// before it is carefully tested
|
||||
// until it is carefully tested
|
||||
ColPivHouseholderQR<JacobianType> qrfac(fjac);
|
||||
fjac = qrfac.matrixQR();
|
||||
wa1 = fjac.diagonal();
|
||||
@ -538,7 +537,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
if (mode != 2)
|
||||
diag = diag.cwiseMax(wa2);
|
||||
|
||||
/* beginning of the inner loop. */
|
||||
do {
|
||||
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
@ -623,9 +621,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
return XtolTooSmall;
|
||||
if (gnorm <= epsilon<Scalar>())
|
||||
return GtolTooSmall;
|
||||
/* end of the inner loop. repeat if iteration unsuccessful. */
|
||||
|
||||
} while (ratio < Scalar(1e-4));
|
||||
/* end of the outer loop. */
|
||||
|
||||
return Running;
|
||||
}
|
||||
|
||||
|
@ -1,45 +1,41 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_rwupdt(int n, Scalar *r__, int ldr, const Scalar *w, Scalar *b, Scalar alpha)
|
||||
template <typename Scalar>
|
||||
void ei_rwupdt(
|
||||
Matrix< Scalar, Dynamic, Dynamic > &r,
|
||||
const Matrix< Scalar, Dynamic, 1> &w,
|
||||
Matrix< Scalar, Dynamic, 1> &b,
|
||||
Scalar alpha)
|
||||
{
|
||||
const int n = r.cols();
|
||||
assert(r.rows()>=n);
|
||||
std::vector<PlanarRotation<Scalar> > givens(n);
|
||||
/* System generated locals */
|
||||
int r_dim1, r_offset;
|
||||
|
||||
/* Local variables */
|
||||
Scalar temp, rowj;
|
||||
|
||||
/* Parameter adjustments */
|
||||
--b;
|
||||
--w;
|
||||
r_dim1 = ldr;
|
||||
r_offset = 1 + r_dim1 * 1;
|
||||
r__ -= r_offset;
|
||||
|
||||
/* Function Body */
|
||||
for (int j = 1; j <= n; ++j) {
|
||||
for (int j = 0; j < n; ++j) {
|
||||
rowj = w[j];
|
||||
|
||||
/* apply the previous transformations to */
|
||||
/* r(i,j), i=1,2,...,j-1, and to w(j). */
|
||||
if (j-1>=1)
|
||||
for (int i = 1; i <= j-1; ++i) {
|
||||
temp = givens[i-1].c() * r__[i + j * r_dim1] + givens[i-1].s() * rowj;
|
||||
rowj = -givens[i-1].s() * r__[i + j * r_dim1] + givens[i-1].c() * rowj;
|
||||
r__[i + j * r_dim1] = temp;
|
||||
}
|
||||
/* r(i,j), i=0,1,...,j-1, and to w(j). */
|
||||
for (int i = 0; i < j; ++i) {
|
||||
temp = givens[i].c() * r(i,j) + givens[i].s() * rowj;
|
||||
rowj = -givens[i].s() * r(i,j) + givens[i].c() * rowj;
|
||||
r(i,j) = temp;
|
||||
}
|
||||
|
||||
if (rowj == 0.)
|
||||
continue;
|
||||
|
||||
/* determine a givens rotation which eliminates w(j). */
|
||||
if (rowj != 0.) {
|
||||
givens[j-1].makeGivens(-r__[j + j * r_dim1], rowj);
|
||||
givens[j].makeGivens(-r(j,j), rowj);
|
||||
|
||||
/* apply the current transformation to r(j,j), b(j), and alpha. */
|
||||
r__[j + j * r_dim1] = givens[j-1].c() * r__[j + j * r_dim1] + givens[j-1].s() * rowj;
|
||||
temp = givens[j-1].c() * b[j] + givens[j-1].s() * alpha;
|
||||
alpha = -givens[j-1].s() * b[j] + givens[j-1].c() * alpha;
|
||||
b[j] = temp;
|
||||
}
|
||||
/* apply the current transformation to r(j,j), b(j), and alpha. */
|
||||
r(j,j) = givens[j].c() * r(j,j) + givens[j].s() * rowj;
|
||||
temp = givens[j].c() * b[j] + givens[j].s() * alpha;
|
||||
alpha = -givens[j].s() * b[j] + givens[j].c() * alpha;
|
||||
b[j] = temp;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user