add/update some benchmark files used to test/compare sparse module features

This commit is contained in:
Gael Guennebaud 2008-10-19 17:06:11 +00:00
parent ecc6c43dba
commit 76fe2e1b34
6 changed files with 525 additions and 18 deletions

View File

@ -72,3 +72,23 @@ void eiToMtl(const EigenSparseMatrix& src, MtlSparse& dst)
ins[it.index()][j] = it.value(); ins[it.index()][j] = it.value();
} }
#endif #endif
#ifdef CSPARSE
extern "C" {
#include "cs.h"
}
void eiToCSparse(const EigenSparseMatrix& src, cs* &dst)
{
cs* aux = cs_spalloc (0, 0, 1, 1, 1);
for (int j=0; j<src.cols(); ++j)
for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it)
if (!cs_entry(aux, it.index(), j, it.value()))
{
std::cout << "cs_entry error\n";
exit(2);
}
dst = cs_compress(aux);
// cs_spfree(aux);
}
#endif

215
bench/sparse_cholesky.cpp Normal file
View File

@ -0,0 +1,215 @@
#define EIGEN_TAUCS_SUPPORT
#define EIGEN_CHOLMOD_SUPPORT
#include <Eigen/Sparse>
// g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
#define NOGMM
#define NOMTL
#ifndef SIZE
#define SIZE 10
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
// typedef SparseMatrix<Scalar,Upper> EigenSparseTriMatrix;
typedef SparseMatrix<Scalar,SelfAdjoint|Lower> EigenSparseSelfAdjointMatrix;
void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst)
{
dst.startFill(rows*cols*density);
for(int j = 0; j < cols; j++)
{
dst.fill(j,j) = ei_random<Scalar>(10,20);
for(int i = j+1; i < rows; i++)
{
Scalar v = (ei_random<float>(0,1) < density) ? ei_random<Scalar>() : 0;
if (v!=0)
dst.fill(i,j) = v;
}
}
dst.endFill();
}
#include <Eigen/Cholesky>
template<int Backend>
void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
{
std::cout << name << "..." << std::flush;
BenchTimer timer;
timer.start();
SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
timer.stop();
std::cout << ":\t" << timer.value() << endl;
std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
//std::cout << "sparse\n" << chol.matrixL() << "%\n";
}
int main(int argc, char *argv[])
{
int rows = SIZE;
int cols = SIZE;
float density = DENSITY;
BenchTimer timer;
VectorXf b = VectorXf::Random(cols);
VectorXf x = VectorXf::Random(cols);
bool densedone = false;
//for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
// float density = 0.5;
{
EigenSparseSelfAdjointMatrix sm1(rows, cols);
std::cout << "Generate sparse matrix (might take a while)...\n";
fillSpdMatrix(density, rows, cols, sm1);
std::cout << "DONE\n\n";
// dense matrices
#ifdef DENSEMATRIX
if (!densedone)
{
densedone = true;
std::cout << "Eigen Dense\t" << density*100 << "%\n";
DenseMatrix m1(rows,cols);
eiToDense(sm1, m1);
m1 = (m1 + m1.transpose()).eval();
m1.diagonal() *= 0.5;
// BENCH(LLT<DenseMatrix> chol(m1);)
// std::cout << "dense:\t" << timer.value() << endl;
BenchTimer timer;
timer.start();
LLT<DenseMatrix> chol(m1);
timer.stop();
std::cout << "dense:\t" << timer.value() << endl;
int count = 0;
for (int j=0; j<cols; ++j)
for (int i=j; i<rows; ++i)
if (!ei_isMuchSmallerThan(ei_abs(chol.matrixL()(i,j)), 0.1))
count++;
std::cout << "dense: " << "nnz = " << count << "\n";
std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
}
#endif
// eigen sparse matrices
doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
#ifdef EIGEN_CHOLMOD_SUPPORT
doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization);
#endif
#ifdef EIGEN_TAUCS_SUPPORT
doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
#endif
#if 0
// TAUCS
{
taucs_ccs_matrix A = sm1.asTaucsMatrix();
//BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
// BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
// std::cout << "taucs:\t" << timer.value() << endl;
taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
for (int j=0; j<cols; ++j)
{
for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
std::cout << chol->values.d[i] << " ";
}
}
// CHOLMOD
#ifdef EIGEN_CHOLMOD_SUPPORT
{
cholmod_common c;
cholmod_start (&c);
cholmod_sparse A;
cholmod_factor *L;
A = sm1.asCholmodMatrix();
BenchTimer timer;
// timer.reset();
timer.start();
std::vector<int> perm(cols);
// std::vector<int> set(ncols);
for (int i=0; i<cols; ++i)
perm[i] = i;
// c.nmethods = 1;
// c.method[0] = 1;
c.nmethods = 1;
c.method [0].ordering = CHOLMOD_NATURAL;
c.postorder = 0;
c.final_ll = 1;
L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
timer.stop();
std::cout << "cholmod/analyze:\t" << timer.value() << endl;
timer.reset();
timer.start();
cholmod_factorize(&A, L, &c);
timer.stop();
std::cout << "cholmod/factorize:\t" << timer.value() << endl;
cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
cholmod_print_factor(L, "Factors", &c);
cholmod_print_sparse(cholmat, "Chol", &c);
cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
//
// cholmod_print_sparse(&A, "A", &c);
// cholmod_write_sparse(stdout, &A, 0, 0, &c);
// for (int j=0; j<cols; ++j)
// {
// for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
// std::cout << chol->values.s[i] << " ";
// }
}
#endif
#endif
}
return 0;
}

112
bench/sparse_lu.cpp Normal file
View File

@ -0,0 +1,112 @@
// g++ -I.. sparse_lu.cpp -O3 -g0 -I /usr/include/superlu/ -lsuperlu -lgfortran -DSIZE=1000 -DDENSITY=.05 && ./a.out
// #define EIGEN_TAUCS_SUPPORT
// #define EIGEN_CHOLMOD_SUPPORT
#define EIGEN_SUPERLU_SUPPORT
#include <Eigen/Sparse>
#define NOGMM
#define NOMTL
#ifndef SIZE
#define SIZE 10
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
typedef Matrix<Scalar,Dynamic,1> VectorX;
#include <Eigen/LU>
int main(int argc, char *argv[])
{
int rows = SIZE;
int cols = SIZE;
float density = DENSITY;
BenchTimer timer;
VectorX b = VectorX::Random(cols);
VectorX x = VectorX::Random(cols);
bool densedone = false;
//for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
// float density = 0.5;
{
EigenSparseMatrix sm1(rows, cols);
fillMatrix(density, rows, cols, sm1);
// dense matrices
#ifdef DENSEMATRIX
if (!densedone)
{
densedone = true;
std::cout << "Eigen Dense\t" << density*100 << "%\n";
DenseMatrix m1(rows,cols);
eiToDense(sm1, m1);
BenchTimer timer;
timer.start();
LU<DenseMatrix> lu(m1);
timer.stop();
std::cout << "Eigen/dense:\t" << timer.value() << endl;
timer.reset();
timer.start();
lu.solve(b,&x);
timer.stop();
std::cout << " solve:\t" << timer.value() << endl;
// std::cout << b.transpose() << "\n";
std::cout << x.transpose() << "\n";
}
#endif
// eigen sparse matrices
{
x.setZero();
BenchTimer timer;
timer.start();
SparseLU<EigenSparseMatrix,SuperLU> lu(sm1);
timer.stop();
std::cout << "Eigen/SuperLU:\t" << timer.value() << endl;
timer.reset();
timer.start();
lu.solve(b,&x);
timer.stop();
std::cout << " solve:\t" << timer.value() << endl;
std::cout << x.transpose() << "\n";
}
}
return 0;
}

View File

@ -1,8 +1,8 @@
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
// -DNOGMM -DNOMTL // -DNOGMM -DNOMTL -DCSPARSE
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
#ifndef SIZE #ifndef SIZE
#define SIZE 10000 #define SIZE 10000
#endif #endif
@ -33,6 +33,22 @@
X \ X \
} timer.stop(); } } timer.stop(); }
#ifdef CSPARSE
cs* cs_sorted_multiply(const cs* a, const cs* b)
{
cs* A = cs_transpose (a, 1) ;
cs* B = cs_transpose (b, 1) ;
cs* D = cs_multiply (B,A) ; /* D = B'*A' */
cs_spfree (A) ;
cs_spfree (B) ;
cs_dropzeros (D) ; /* drop zeros from D */
cs* C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */
cs_spfree (D) ;
return C;
}
#endif
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
int rows = SIZE; int rows = SIZE;
@ -87,13 +103,15 @@ int main(int argc, char *argv[])
// eigen sparse matrices // eigen sparse matrices
{ {
std::cout << "Eigen sparse\t" << density*100 << "%\n"; std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "% * "
<< sm2.nonZeros()/float(sm2.rows()*sm2.cols())*100 << "%\n";
// timer.reset(); // timer.reset();
// timer.start(); // timer.start();
BENCH(for (int k=0; k<REPEAT; ++k) sm3 = sm1 * sm2;) BENCH(for (int k=0; k<REPEAT; ++k) sm3 = sm1 * sm2;)
// timer.stop(); // timer.stop();
std::cout << " a * b:\t" << timer.value() << endl; std::cout << " a * b:\t" << timer.value() << endl;
// std::cout << sm3 << "\n";
timer.reset(); timer.reset();
timer.start(); timer.start();
@ -120,6 +138,32 @@ int main(int argc, char *argv[])
std::cout << " a * b' :\t" << timer.value() << endl; std::cout << " a * b' :\t" << timer.value() << endl;
} }
// CSparse
#ifdef CSPARSE
{
std::cout << "CSparse \t" << density*100 << "%\n";
cs *m1, *m2, *m3;
eiToCSparse(sm1, m1);
eiToCSparse(sm2, m2);
timer.reset();
timer.start();
for (int k=0; k<REPEAT; ++k)
{
m3 = cs_sorted_multiply(m1, m2);
if (!m3)
{
std::cerr << "cs_multiply failed\n";
// break;
}
// cs_print(m3, 0);
cs_spfree(m3);
}
timer.stop();
std::cout << " a * b:\t" << timer.value() << endl;
}
#endif
// GMM++ // GMM++
#ifndef NOGMM #ifndef NOGMM
{ {

104
bench/sparse_transpose.cpp Normal file
View File

@ -0,0 +1,104 @@
//g++ -O3 -g0 -DNDEBUG sparse_transpose.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
// -DNOGMM -DNOMTL
// -DCSPARSE -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
#ifndef SIZE
#define SIZE 10000
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \
for (int _j=0; _j<NBTRIES; ++_j) { \
timer.start(); \
for (int _k=0; _k<REPEAT; ++_k) { \
X \
} timer.stop(); }
int main(int argc, char *argv[])
{
int rows = SIZE;
int cols = SIZE;
float density = DENSITY;
EigenSparseMatrix sm1(rows,cols), sm3(rows,cols);
BenchTimer timer;
for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
{
fillMatrix(density, rows, cols, sm1);
// dense matrices
#ifdef DENSEMATRIX
{
DenseMatrix m1(rows,cols), m3(rows,cols);
eiToDense(sm1, m1);
BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1.transpose();)
std::cout << " Eigen dense:\t" << timer.value() << endl;
}
#endif
std::cout << "Non zeros: " << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n";
// eigen sparse matrices
{
BENCH(for (int k=0; k<REPEAT; ++k) sm3 = sm1.transpose();)
std::cout << " Eigen:\t" << timer.value() << endl;
}
// CSparse
#ifdef CSPARSE
{
cs *m1, *m3;
eiToCSparse(sm1, m1);
BENCH(for (int k=0; k<REPEAT; ++k) { m3 = cs_transpose(m1,1); cs_spfree(m3);})
std::cout << " CSparse:\t" << timer.value() << endl;
}
#endif
// GMM++
#ifndef NOGMM
{
GmmDynSparse gmmT3(rows,cols);
GmmSparse m1(rows,cols), m3(rows,cols);
eiToGmm(sm1, m1);
BENCH(for (int k=0; k<REPEAT; ++k) gmm::copy(gmm::transposed(m1),m3);)
std::cout << " GMM:\t\t" << timer.value() << endl;
}
#endif
// MTL4
#ifndef NOMTL
{
MtlSparse m1(rows,cols), m3(rows,cols);
eiToMtl(sm1, m1);
BENCH(for (int k=0; k<REPEAT; ++k) m3 = trans(m1);)
std::cout << " MTL4:\t\t" << timer.value() << endl;
}
#endif
std::cout << "\n\n";
}
return 0;
}

View File

@ -2,6 +2,7 @@
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
// -DNOGMM -DNOMTL // -DNOGMM -DNOMTL
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
#ifndef SIZE #ifndef SIZE
#define SIZE 10000 #define SIZE 10000
@ -60,8 +61,9 @@ int main(int argc, char *argv[])
BenchTimer timer; BenchTimer timer;
#if 1 #if 1
EigenSparseTriMatrix sm1(rows,cols); EigenSparseTriMatrix sm1(rows,cols);
VectorXf b = VectorXf::Random(cols); typedef Matrix<Scalar,Dynamic,1> DenseVector;
VectorXf x = VectorXf::Random(cols); DenseVector b = DenseVector::Random(cols);
DenseVector x = DenseVector::Random(cols);
bool densedone = false; bool densedone = false;
@ -81,13 +83,13 @@ int main(int argc, char *argv[])
eiToDense(sm1, m1); eiToDense(sm1, m1);
m2 = m1; m2 = m1;
BENCH(x = m1.marked<Upper>().inverseProduct(b);) BENCH(x = m1.marked<Upper>().solveTriangular(b);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n"; // std::cerr << x.transpose() << "\n";
BENCH(x = m2.marked<Upper>().inverseProduct(b);) BENCH(x = m2.marked<Upper>().solveTriangular(b);)
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n"; // std::cerr << x.transpose() << "\n";
} }
#endif #endif
@ -96,13 +98,13 @@ int main(int argc, char *argv[])
std::cout << "Eigen sparse\t" << density*100 << "%\n"; std::cout << "Eigen sparse\t" << density*100 << "%\n";
EigenSparseTriMatrixRow sm2 = sm1; EigenSparseTriMatrixRow sm2 = sm1;
BENCH(x = sm1.inverseProduct(b);) BENCH(x = sm1.solveTriangular(b);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n"; // std::cerr << x.transpose() << "\n";
BENCH(x = sm2.inverseProduct(b);) BENCH(x = sm2.solveTriangular(b);)
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << x.transpose() << "\n"; // std::cerr << x.transpose() << "\n";
// x = b; // x = b;
// BENCH(sm1.inverseProductInPlace(x);) // BENCH(sm1.inverseProductInPlace(x);)
@ -115,6 +117,18 @@ int main(int argc, char *argv[])
// std::cerr << x.transpose() << "\n"; // std::cerr << x.transpose() << "\n";
} }
// CSparse
#ifdef CSPARSE
{
std::cout << "CSparse \t" << density*100 << "%\n";
cs *m1;
eiToCSparse(sm1, m1);
BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; )
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
}
#endif
// GMM++ // GMM++
#ifndef NOGMM #ifndef NOGMM
{ {
@ -130,13 +144,13 @@ int main(int argc, char *argv[])
gmmX = gmmB; gmmX = gmmB;
BENCH(gmm::upper_tri_solve(m1, gmmX, false);) BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; // std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
gmmX = gmmB; gmmX = gmmB;
BENCH(gmm::upper_tri_solve(m2, gmmX, false);) BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
timer.stop(); timer.stop();
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; // std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
} }
#endif #endif
@ -162,7 +176,7 @@ int main(int argc, char *argv[])
#endif #endif
std::cout << "\n\n";
} }
#endif #endif
@ -199,8 +213,6 @@ int main(int argc, char *argv[])
} }
#endif #endif
std::cout << "\n\n";
return 0; return 0;
} }