Generalize parallel GEMM implementation in Core to work with ThreadPool in addition to OpenMP.

This commit is contained in:
Rasmus Munk Larsen 2023-11-10 17:42:30 +00:00
parent 4d54c43d6c
commit 76e8c04553
5 changed files with 228 additions and 91 deletions

View File

@ -349,6 +349,9 @@ using std::ptrdiff_t;
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#ifdef EIGEN_GEMM_THREADPOOL
#include "ThreadPool"
#endif
#include "src/Core/products/Parallelizer.h"
#include "src/Core/ProductEvaluators.h"
#include "src/Core/products/GeneralMatrixVector.h"

View File

@ -84,12 +84,12 @@ static void run(Index rows, Index cols, Index depth,
gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
#ifdef EIGEN_HAS_OPENMP
#if defined(EIGEN_HAS_OPENMP) || defined(EIGEN_GEMM_THREADPOOL)
if(info)
{
// this is the parallel version!
int tid = omp_get_thread_num();
int threads = omp_get_num_threads();
int tid = info->logical_thread_id;
int threads = info->num_threads;
LhsScalar* blockA = blocking.blockA();
eigen_internal_assert(blockA!=0);
@ -110,15 +110,15 @@ static void run(Index rows, Index cols, Index depth,
// each thread packs the sub block A_k,i to A'_i where i is the thread id.
// However, before copying to A'_i, we have to make sure that no other thread is still using it,
// i.e., we test that info[tid].users equals 0.
// Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
while(info[tid].users!=0) {}
info[tid].users = threads;
// i.e., we test that info->task_info[tid].users equals 0.
// Then, we set info->task_info[tid].users to the number of threads to mark that all other threads are going to use it.
while(info->task_info[tid].users!=0) {}
info->task_info[tid].users = threads;
pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length);
pack_lhs(blockA+info->task_info[tid].lhs_start*actual_kc, lhs.getSubMapper(info->task_info[tid].lhs_start,k), actual_kc, info->task_info[tid].lhs_length);
// Notify the other threads that the part A'_i is ready to go.
info[tid].sync = k;
info->task_info[tid].sync = k;
// Computes C_i += A' * B' per A'_i
for(int shift=0; shift<threads; ++shift)
@ -129,11 +129,10 @@ static void run(Index rows, Index cols, Index depth,
// we use testAndSetOrdered to mimic a volatile access.
// However, no need to wait for the B' part which has been updated by the current thread!
if (shift>0) {
while(info[i].sync!=k) {
}
while(info->task_info[i].sync!=k) {}
}
gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha);
gebp(res.getSubMapper(info->task_info[i].lhs_start, 0), blockA+info->task_info[i].lhs_start*actual_kc, blockB, info->task_info[i].lhs_length, actual_kc, nc, alpha);
}
// Then keep going as usual with the remaining B'
@ -151,11 +150,11 @@ static void run(Index rows, Index cols, Index depth,
// Release all the sub blocks A'_i of A' for the current thread,
// i.e., we simply decrement the number of users by 1
for(Index i=0; i<threads; ++i)
info[i].users -= 1;
info->task_info[i].users -= 1;
}
}
else
#endif // EIGEN_HAS_OPENMP
#endif // defined(EIGEN_HAS_OPENMP) || defined(EIGEN_GEMM_THREADPOOL)
{
EIGEN_UNUSED_VARIABLE(info);

View File

@ -13,49 +13,41 @@
// IWYU pragma: private
#include "../InternalHeaderCheck.h"
// Note that in the following, there are 3 different uses of the concept
// "number of threads":
// 1. Max number of threads used by OpenMP or ThreadPool.
// * For OpenMP this is typically the value set by the OMP_NUM_THREADS
// environment variable, or by a call to omp_set_num_threads() prior to
// calling Eigen.
// * For ThreadPool, this is the number of threads in the ThreadPool.
// 2. Max number of threads currently allowed to be used by parallel Eigen
// operations. This is set by setNbThreads(), and cannot exceed the value
// in 1.
// 3. The actual number of threads used for a given parallel Eigen operation.
// This is typically computed on the fly using a cost model and cannot exceed
// the value in 2.
// * For OpenMP, this is typically the number of threads specified in individual
// "omp parallel" pragmas associated with an Eigen operation.
// * For ThreadPool, it is the number of concurrent tasks scheduled in the
// threadpool for a given Eigen operation. Notice that since the threadpool
// uses task stealing, there is no way to limit the number of concurrently
// executing tasks to below the number in 1. except by limiting the total
// number of tasks in flight.
#if defined(EIGEN_HAS_OPENMP) && defined(EIGEN_GEMM_THREADPOOL)
#error "EIGEN_HAS_OPENMP and EIGEN_GEMM_THREADPOOL may not both be defined."
#endif
namespace Eigen {
namespace internal {
/** \internal */
inline void manage_multi_threading(Action action, int* v)
{
static int m_maxThreads = -1;
EIGEN_UNUSED_VARIABLE(m_maxThreads)
if(action==SetAction)
{
eigen_internal_assert(v!=0);
m_maxThreads = *v;
}
else if(action==GetAction)
{
eigen_internal_assert(v!=0);
#ifdef EIGEN_HAS_OPENMP
if(m_maxThreads>0)
*v = m_maxThreads;
else
*v = omp_get_max_threads();
#else
*v = 1;
#endif
}
else
{
eigen_internal_assert(false);
}
inline void manage_multi_threading(Action action, int* v);
}
}
// Public APIs.
/** Must be call first when calling Eigen from multiple threads */
inline void initParallel()
{
int nbt;
internal::manage_multi_threading(GetAction, &nbt);
std::ptrdiff_t l1, l2, l3;
internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
}
EIGEN_DEPRECATED inline void initParallel() {}
/** \returns the max number of threads reserved for Eigen
* \sa setNbThreads */
@ -73,42 +65,102 @@ inline void setNbThreads(int v)
internal::manage_multi_threading(SetAction, &v);
}
namespace internal {
#ifdef EIGEN_GEMM_THREADPOOL
// Sets the ThreadPool used by Eigen parallel Gemm.
//
// NOTICE: This function has a known race condition with
// parallelize_gemm below, and should not be called while
// an instance of that function is running.
//
// TODO(rmlarsen): Make the device API available instead of
// storing a local static pointer variable to avoid this issue.
inline ThreadPool* setGemmThreadPool(ThreadPool* new_pool) {
static ThreadPool* pool;
if (new_pool != nullptr) {
// This will wait for work in all threads in *pool to finish,
// then destroy the old ThreadPool, and then replace it with new_pool.
pool = new_pool;
// Reset the number of threads to the number of threads on the new pool.
setNbThreads(pool->NumThreads());
}
return pool;
}
template<typename Index> struct GemmParallelInfo
{
#ifdef EIGEN_HAS_OPENMP
GemmParallelInfo() : sync(-1), users(0), lhs_start(0), lhs_length(0) {}
std::atomic<Index> sync;
std::atomic<int> users;
#else
GemmParallelInfo() : lhs_start(0), lhs_length(0) {}
// Gets the ThreadPool used by Eigen parallel Gemm.
inline ThreadPool* getGemmThreadPool() {
return setGemmThreadPool(nullptr);
}
#endif
namespace internal {
// Implementation.
#if defined(EIGEN_USE_BLAS) || (!defined(EIGEN_HAS_OPENMP) && !defined(EIGEN_GEMM_THREADPOOL))
inline void manage_multi_threading(Action /*unused*/, int* /*unused*/) {}
template<typename Index> struct GemmParallelInfo {};
template <bool Condition, typename Functor, typename Index>
EIGEN_STRONG_INLINE void parallelize_gemm(const Functor& func, Index rows, Index cols,
Index /*unused*/, bool /*unused*/) {
func(0,rows, 0,cols);
}
#else
template<typename Index> struct GemmParallelTaskInfo {
GemmParallelTaskInfo() : sync(-1), users(0), lhs_start(0), lhs_length(0) {}
std::atomic<Index> sync;
std::atomic<int> users;
Index lhs_start;
Index lhs_length;
};
template<bool Condition, typename Functor, typename Index>
void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth, bool transpose)
{
// TODO when EIGEN_USE_BLAS is defined,
// we should still enable OMP for other scalar types
// Without C++11, we have to disable GEMM's parallelization on
// non x86 architectures because there volatile is not enough for our purpose.
// See bug 1572.
#if (! defined(EIGEN_HAS_OPENMP)) || defined(EIGEN_USE_BLAS)
// FIXME the transpose variable is only needed to properly split
// the matrix product when multithreading is enabled. This is a temporary
// fix to support row-major destination matrices. This whole
// parallelizer mechanism has to be redesigned anyway.
EIGEN_UNUSED_VARIABLE(depth);
EIGEN_UNUSED_VARIABLE(transpose);
func(0,rows, 0,cols);
#else
template<typename Index> struct GemmParallelInfo {
const int logical_thread_id;
const int num_threads;
GemmParallelTaskInfo<Index>* task_info;
// Dynamically check whether we should enable or disable OpenMP.
GemmParallelInfo(int logical_thread_id_, int num_threads_,
GemmParallelTaskInfo<Index>* task_info_)
: logical_thread_id(logical_thread_id_),
num_threads(num_threads_),
task_info(task_info_) {}
};
inline void manage_multi_threading(Action action, int* v) {
static int m_maxThreads = -1;
if (action == SetAction) {
eigen_internal_assert(v != nullptr);
#if defined(EIGEN_HAS_OPENMP)
// Calling action == SetAction and *v = 0 means
// restoring m_maxThreads to the maximum number of threads specified
// for OpenMP.
eigen_internal_assert(*v >= 0);
int omp_threads = omp_get_max_threads();
m_maxThreads = (*v == 0 ? omp_threads : std::min(*v, omp_threads));
#elif defined(EIGEN_GEMM_THREADPOOL)
// Calling action == SetAction and *v = 0 means
// restoring m_maxThreads to the number of threads in the ThreadPool,
// which defaults to 1 if no pool was provided.
eigen_internal_assert(*v >= 0);
ThreadPool* pool = getGemmThreadPool();
int pool_threads = pool != nullptr ? pool->NumThreads() : 1;
m_maxThreads = (*v == 0 ? pool_threads : numext::mini(pool_threads, *v));
#endif
} else if (action == GetAction) {
eigen_internal_assert(*v != nullptr);
*v = m_maxThreads;
} else {
eigen_internal_assert(false);
}
}
template <bool Condition, typename Functor, typename Index>
EIGEN_STRONG_INLINE void parallelize_gemm(const Functor& func, Index rows, Index cols,
Index depth, bool transpose) {
// Dynamically check whether we should even try to execute in parallel.
// The conditions are:
// - the max number of threads we can create is greater than 1
// - we are not already in a parallel code
@ -126,27 +178,41 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth,
pb_max_threads = std::max<Index>(1, std::min<Index>(pb_max_threads, static_cast<Index>( work / kMinTaskSize ) ));
// compute the number of threads we are going to use
Index threads = std::min<Index>(nbThreads(), pb_max_threads);
int threads = std::min<int>(nbThreads(), pb_max_threads);
// if multi-threading is explicitly disabled, not useful, or if we already are in a parallel session,
// then abort multi-threading
// FIXME omp_get_num_threads()>1 only works for openmp, what if the user does not use openmp?
if((!Condition) || (threads==1) || (omp_get_num_threads()>1))
// if multi-threading is explicitly disabled, not useful, or if we already are
// inside a parallel session, then abort multi-threading
bool dont_parallelize = (!Condition) || (threads<=1);
#if defined(EIGEN_HAS_OPENMP)
// don't parallelize if we are executing in a parallel context already.
dont_parallelize |= omp_get_num_threads() > 1;
#elif defined(EIGEN_GEMM_THREADPOOL)
// don't parallelize if we have a trivial threadpool or the current thread id
// is != -1, indicating that we are already executing on a thread inside the pool.
// In other words, we do not allow nested parallelism, since this would lead to
// deadlocks due to the workstealing nature of the threadpool.
ThreadPool* pool = getGemmThreadPool();
dont_parallelize |= (pool == nullptr || pool->CurrentThreadId() != -1);
#endif
if (dont_parallelize)
return func(0,rows, 0,cols);
Eigen::initParallel();
func.initParallelSession(threads);
if(transpose)
std::swap(rows,cols);
ei_declare_aligned_stack_constructed_variable(GemmParallelInfo<Index>,info,threads,0);
ei_declare_aligned_stack_constructed_variable(GemmParallelTaskInfo<Index>,task_info,threads,0);
#if defined(EIGEN_HAS_OPENMP)
#pragma omp parallel num_threads(threads)
{
Index i = omp_get_thread_num();
// Note that the actual number of threads might be lower than the number of request ones.
// Note that the actual number of threads might be lower than the number of
// requested ones
Index actual_threads = omp_get_num_threads();
GemmParallelInfo<Index> info(i, actual_threads, task_info);
Index blockCols = (cols / actual_threads) & ~Index(0x3);
Index blockRows = (rows / actual_threads);
@ -158,17 +224,52 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth,
Index c0 = i*blockCols;
Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols;
info[i].lhs_start = r0;
info[i].lhs_length = actualBlockRows;
info.task_info[i].lhs_start = r0;
info.task_info[i].lhs_length = actualBlockRows;
if(transpose) func(c0, actualBlockCols, 0, rows, info);
else func(0, rows, c0, actualBlockCols, info);
if(transpose) func(c0, actualBlockCols, 0, rows, &info);
else func(0, rows, c0, actualBlockCols, &info);
}
#elif defined(EIGEN_GEMM_THREADPOOL)
ei_declare_aligned_stack_constructed_variable(GemmParallelTaskInfo<Index>,meta_info,threads,0);
Barrier barrier(threads);
auto task = [=, &func, &barrier, &task_info](int i)
{
Index actual_threads = threads;
GemmParallelInfo<Index> info(i, actual_threads, task_info);
Index blockCols = (cols / actual_threads) & ~Index(0x3);
Index blockRows = (rows / actual_threads);
blockRows = (blockRows/Functor::Traits::mr)*Functor::Traits::mr;
Index r0 = i*blockRows;
Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows;
Index c0 = i*blockCols;
Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols;
info.task_info[i].lhs_start = r0;
info.task_info[i].lhs_length = actualBlockRows;
if(transpose) func(c0, actualBlockCols, 0, rows, &info);
else func(0, rows, c0, actualBlockCols, &info);
barrier.Notify();
};
// Notice that we do not schedule more than "threads" tasks, which allows us to
// limit number of running threads, even if the threadpool itself was constructed
// with a larger number of threads.
for (int i=0; i < threads - 1; ++i) {
pool->Schedule([=, task = std::move(task)] { task(i); });
}
task(threads - 1);
barrier.Wait();
#endif
}
} // end namespace internal
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PARALLELIZER_H

View File

@ -234,6 +234,7 @@ ei_add_test(product_trmm)
ei_add_test(product_trsolve)
ei_add_test(product_mmtr)
ei_add_test(product_notemporary)
ei_add_test(product_threaded)
ei_add_test(stable_norm)
ei_add_test(permutationmatrices)
ei_add_test(bandmatrix)

33
test/product_threaded.cpp Normal file
View File

@ -0,0 +1,33 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2023 Rasmus Munk Larsen <rmlarsen@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_GEMM_THREADPOOL
#include "main.h"
void test_parallelize_gemm() {
constexpr int n = 1024;
constexpr int num_threads = 4;
MatrixXf a(n,n);
MatrixXf b(n,n);
MatrixXf c(n,n);
c.noalias() = a*b;
ThreadPool pool(num_threads);
MatrixXf c_threaded(n,n);
c_threaded.noalias() = a*b;
VERIFY_IS_APPROX(c, c_threaded);
}
EIGEN_DECLARE_TEST(product_threaded)
{
CALL_SUBTEST(test_parallelize_gemm());
}