This commit is contained in:
Gael Guennebaud 2016-06-14 15:33:47 +02:00
commit 76236cdea4
28 changed files with 376 additions and 156 deletions

View File

@ -32,6 +32,7 @@
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"

View File

@ -31,6 +31,7 @@
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"

View File

@ -149,7 +149,7 @@ class Array
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
Array(Array&& other)
Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
: Base(std::move(other))
{
Base::_check_template_params();
@ -157,7 +157,7 @@ class Array
Base::_set_noalias(other);
}
EIGEN_DEVICE_FUNC
Array& operator=(Array&& other)
Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
{
other.swap(*this);
return *this;

View File

@ -28,6 +28,8 @@ template<> struct packet_traits<Eigen::half> : default_packet_traits
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasAdd = 1,
HasMul = 1,
HasDiv = 1,
HasSqrt = 1,
HasRsqrt = 1,

View File

@ -14,8 +14,9 @@ namespace Eigen {
namespace internal {
static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static uint32x4_t p4ui_CONJ_XOR = vld1q_u32( conj_XOR_DATA );
static uint32x2_t p2ui_CONJ_XOR = vld1_u32( conj_XOR_DATA );
//---------- float ----------
struct Packet2cf
@ -274,7 +275,8 @@ ptranspose(PacketBlock<Packet2cf,2>& kernel) {
//---------- double ----------
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
static uint64x2_t p2ul_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x0, 0x8000000000000000);
const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 };
static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA );
struct Packet1cd
{

View File

@ -49,17 +49,6 @@ typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
#if EIGEN_COMP_LLVM && !EIGEN_COMP_CLANG
//Special treatment for Apple's llvm-gcc, its NEON packet types are unions
#define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}}
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
#else
//Default initializer for packets
#define EIGEN_INIT_NEON_PACKET2(X, Y) {X, Y}
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
#endif
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
@ -122,12 +111,14 @@ template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
{
Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
const float32_t f[] = {0, 1, 2, 3};
Packet4f countdown = vld1q_f32(f);
return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a)
{
Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
const int32_t i[] = {0, 1, 2, 3};
Packet4i countdown = vld1q_s32(i);
return vaddq_s32(pset1<Packet4i>(a), countdown);
}
@ -585,7 +576,8 @@ template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { r
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a)
{
Packet2d countdown = EIGEN_INIT_NEON_PACKET2(0, 1);
const double countdown_raw[] = {0.0,1.0};
const Packet2d countdown = vld1q_f64(countdown_raw);
return vaddq_f64(pset1<Packet2d>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }

View File

@ -328,6 +328,30 @@ struct result_of<Func(ArgType0,ArgType1)> {
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
};
#endif
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.

View File

@ -327,33 +327,22 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
}
else
{
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
// From the eigen decomposition of T = U * E * U^-1,
// we can extract the eigenvalues of (U^-1 * S * U) / E
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
// Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
// T = [a b ; 0 c]
// S = [e f ; g h]
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
RealScalar d = c-a;
RealScalar gb = g*b;
Matrix<RealScalar,2,2> A;
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
g*c , (gb+h*d)*a;
// T = [a 0]
// [0 b]
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i+1, i+1);
Matrix<RealScalar,2,2> S2 = m_matS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
m_alphas.coeffRef(i) = ComplexScalar(S2.coeff(1,1) + p, z);
m_alphas.coeffRef(i+1) = ComplexScalar(S2.coeff(1,1) + p, -z);
m_betas.coeffRef(i) =
m_betas.coeffRef(i+1) = a*c*d;
m_betas.coeffRef(i+1) = a*b;
i += 2;
}
}

View File

@ -552,7 +552,6 @@ namespace Eigen {
m_T.coeffRef(l,l-1) = Scalar(0.0);
}
template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
@ -616,6 +615,37 @@ namespace Eigen {
}
// check if we converged before reaching iterations limit
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
// For each non triangular 2x2 diagonal block of S,
// reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
// This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
// and is in par with Lapack/Matlab QZ.
if(m_info==Success)
{
for(Index i=0; i<dim-1; ++i)
{
if(m_S.coeff(i+1, i) != Scalar(0))
{
JacobiRotation<Scalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
// Apply resulting Jacobi rotations
m_S.applyOnTheLeft(i,i+1,j_left);
m_S.applyOnTheRight(i,i+1,j_right);
m_T.applyOnTheLeft(i,i+1,j_left);
m_T.applyOnTheRight(i,i+1,j_right);
m_T(i+1,i) = m_T(i,i+1) = Scalar(0);
if(m_computeQZ) {
m_Q.applyOnTheRight(i,i+1,j_left.transpose());
m_Z.applyOnTheLeft(i,i+1,j_right.transpose());
}
i++;
}
}
}
return *this;
} // end compute

View File

@ -367,10 +367,10 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
* (conj(h) * matA.col(i).tail(remainingSize)));
hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
.rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
.rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = h;

View File

@ -1367,7 +1367,7 @@ struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is
EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
rhs << other,1;
rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
return res.template head<Dim>();
}

View File

@ -183,7 +183,7 @@ class PardisoImpl : public SparseSolverBase<Derived>
{
if(m_isInitialized) // Factorization ran at least once
{
internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, -1, m_size,0, 0, 0, m_perm.data(), 0,
internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, -1, internal::convert_index<StorageIndex>(m_size),0, 0, 0, m_perm.data(), 0,
m_iparm.data(), m_msglvl, NULL, NULL);
m_isInitialized = false;
}
@ -194,11 +194,11 @@ class PardisoImpl : public SparseSolverBase<Derived>
m_type = type;
bool symmetric = std::abs(m_type) < 10;
m_iparm[0] = 1; // No solver default
m_iparm[1] = 3; // use Metis for the ordering
m_iparm[2] = 1; // Numbers of processors, value of OMP_NUM_THREADS
m_iparm[1] = 2; // use Metis for the ordering
m_iparm[2] = 0; // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??)
m_iparm[3] = 0; // No iterative-direct algorithm
m_iparm[4] = 0; // No user fill-in reducing permutation
m_iparm[5] = 0; // Write solution into x
m_iparm[5] = 0; // Write solution into x, b is left unchanged
m_iparm[6] = 0; // Not in use
m_iparm[7] = 2; // Max numbers of iterative refinement steps
m_iparm[8] = 0; // Not in use
@ -219,7 +219,8 @@ class PardisoImpl : public SparseSolverBase<Derived>
m_iparm[26] = 0; // No matrix checker
m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
m_iparm[34] = 1; // C indexing
m_iparm[59] = 1; // Automatic switch between In-Core and Out-of-Core modes
m_iparm[36] = 0; // CSR
m_iparm[59] = 0; // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core
memset(m_pt, 0, sizeof(m_pt));
}
@ -246,7 +247,7 @@ class PardisoImpl : public SparseSolverBase<Derived>
mutable SparseMatrixType m_matrix;
mutable ComputationInfo m_info;
bool m_analysisIsOk, m_factorizationIsOk;
Index m_type, m_msglvl;
StorageIndex m_type, m_msglvl;
mutable void *m_pt[64];
mutable ParameterType m_iparm;
mutable IntColVectorType m_perm;
@ -265,10 +266,9 @@ Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
derived().getMatrix(a);
Index error;
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 12, m_size,
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 12, internal::convert_index<StorageIndex>(m_size),
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
manageErrorCode(error);
m_analysisIsOk = true;
m_factorizationIsOk = true;
@ -287,7 +287,7 @@ Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
derived().getMatrix(a);
Index error;
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 11, m_size,
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 11, internal::convert_index<StorageIndex>(m_size),
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
@ -306,8 +306,8 @@ Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
derived().getMatrix(a);
Index error;
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 22, m_size,
Index error;
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 22, internal::convert_index<StorageIndex>(m_size),
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
@ -354,9 +354,9 @@ void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase
}
Index error;
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 33, m_size,
error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 33, internal::convert_index<StorageIndex>(m_size),
m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
m_perm.data(), nrhs, m_iparm.data(), m_msglvl,
m_perm.data(), internal::convert_index<StorageIndex>(nrhs), m_iparm.data(), m_msglvl,
rhs_ptr, x.derived().data());
manageErrorCode(error);
@ -371,6 +371,9 @@ void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase
* using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
* The vectors or matrices X and B can be either dense or sparse.
*
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
* \code solver.pardisoParameterArray()[59] = 1; \endcode
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
@ -421,6 +424,9 @@ class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
* using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
* The vectors or matrices X and B can be either dense or sparse.
*
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
* \code solver.pardisoParameterArray()[59] = 1; \endcode
*
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
* Upper|Lower can be used to tell both triangular parts can be used as input.
@ -480,6 +486,9 @@ class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
* For complex matrices, A can also be symmetric only, see the \a Options template parameter.
* The vectors or matrices X and B can be either dense or sparse.
*
* By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
* \code solver.pardisoParameterArray()[59] = 1; \endcode
*
* \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
* Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.

View File

@ -419,38 +419,6 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
}
};
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
using std::abs;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(d == RealScalar(0))
{
rot1.s() = RealScalar(0);
rot1.c() = RealScalar(1);
}
else
{
// If d!=0, then t/d cannot overflow because the magnitude of the
// entries forming d are not too small compared to the ones forming t.
RealScalar u = t / d;
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = RealScalar(1) / tmp;
rot1.c() = u / tmp;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
template<typename _MatrixType, int QRPreconditioner>
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
{

View File

@ -0,0 +1,54 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2013-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REALSVD2X2_H
#define EIGEN_REALSVD2X2_H
namespace Eigen {
namespace internal {
template<typename MatrixType, typename RealScalar, typename Index>
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> *j_left,
JacobiRotation<RealScalar> *j_right)
{
using std::sqrt;
using std::abs;
Matrix<RealScalar,2,2> m;
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(d == RealScalar(0))
{
rot1.s() = RealScalar(0);
rot1.c() = RealScalar(1);
}
else
{
// If d!=0, then t/d cannot overflow because the magnitude of the
// entries forming d are not too small compared to the ones forming t.
RealScalar u = t / d;
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = RealScalar(1) / tmp;
rot1.c() = u / tmp;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_REALSVD2X2_H

View File

@ -247,6 +247,7 @@ tan() const
*
* \sa tan(), asin(), acos()
*/
EIGEN_DEVICE_FUNC
inline const AtanReturnType
atan() const
{
@ -288,6 +289,7 @@ asin() const
*
* \sa tan(), sinh(), cosh()
*/
EIGEN_DEVICE_FUNC
inline const TanhReturnType
tanh() const
{
@ -301,6 +303,7 @@ tanh() const
*
* \sa sin(), tanh(), cosh()
*/
EIGEN_DEVICE_FUNC
inline const SinhReturnType
sinh() const
{
@ -314,6 +317,7 @@ sinh() const
*
* \sa tan(), sinh(), cosh()
*/
EIGEN_DEVICE_FUNC
inline const CoshReturnType
cosh() const
{
@ -331,6 +335,7 @@ cosh() const
*
* \sa digamma()
*/
EIGEN_DEVICE_FUNC
inline const LgammaReturnType
lgamma() const
{
@ -345,6 +350,7 @@ lgamma() const
*
* \sa Eigen::digamma(), Eigen::polygamma(), lgamma()
*/
EIGEN_DEVICE_FUNC
inline const DigammaReturnType
digamma() const
{
@ -363,6 +369,7 @@ digamma() const
*
* \sa erfc()
*/
EIGEN_DEVICE_FUNC
inline const ErfReturnType
erf() const
{
@ -381,6 +388,7 @@ erf() const
*
* \sa erf()
*/
EIGEN_DEVICE_FUNC
inline const ErfcReturnType
erfc() const
{
@ -436,6 +444,7 @@ cube() const
*
* \sa ceil(), floor()
*/
EIGEN_DEVICE_FUNC
inline const RoundReturnType
round() const
{
@ -449,6 +458,7 @@ round() const
*
* \sa ceil(), round()
*/
EIGEN_DEVICE_FUNC
inline const FloorReturnType
floor() const
{
@ -462,6 +472,7 @@ floor() const
*
* \sa floor(), round()
*/
EIGEN_DEVICE_FUNC
inline const CeilReturnType
ceil() const
{
@ -475,6 +486,7 @@ ceil() const
*
* \sa isfinite(), isinf()
*/
EIGEN_DEVICE_FUNC
inline const IsNaNReturnType
isNaN() const
{
@ -488,6 +500,7 @@ isNaN() const
*
* \sa isnan(), isfinite()
*/
EIGEN_DEVICE_FUNC
inline const IsInfReturnType
isInf() const
{
@ -501,6 +514,7 @@ isInf() const
*
* \sa isnan(), isinf()
*/
EIGEN_DEVICE_FUNC
inline const IsFiniteReturnType
isFinite() const
{

View File

@ -44,4 +44,8 @@ before-evaluators
7013:f875e75f07e5 # organize a little our default cache sizes, and use a saner default L1 outside of x86 (10% faster on Nexus 5)
7591:09a8e2186610 # 3.3-alpha1
7650:b0f3c8f43025 # help clang inlining
8744:74b789ada92a # Improved the matrix multiplication blocking in the case where mr is not a power of 2 (e.g on Haswell CPUs)
8789:efcb912e4356 # Made the index type a template parameter to evaluateProductBlockingSizes. Use numext::mini and numext::maxi instead of std::min/std::max to compute blocking sizes
8972:81d53c711775 # Don't optimize the processing of the last rows of a matrix matrix product in cases that violate the assumptions made by the optimized code path
8985:d935df21a082 # Remove the rotating kernel.

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -10,6 +10,7 @@
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
{
@ -21,6 +22,7 @@ template<typename MatrixType> void generalized_eigensolver_real(const MatrixType
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<Scalar> ComplexScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType a = MatrixType::Random(rows,cols);
@ -31,14 +33,28 @@ template<typename MatrixType> void generalized_eigensolver_real(const MatrixType
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
// lets compare to GeneralizedSelfAdjointEigenSolver
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
{
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
VectorType realEigenvalues = eig.eigenvalues().real();
std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
VectorType realEigenvalues = eig.eigenvalues().real();
std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
}
// non symmetric case:
{
GeneralizedEigenSolver<MatrixType> eig(a,b);
for(Index k=0; k<cols; ++k)
{
Matrix<ComplexScalar,Dynamic,Dynamic> tmp = (eig.betas()(k)*a).template cast<ComplexScalar>() - eig.alphas()(k)*b;
if(tmp.norm()>(std::numeric_limits<Scalar>::min)())
tmp /= tmp.norm();
VERIFY_IS_MUCH_SMALLER_THAN( std::abs(tmp.determinant()), Scalar(1) );
}
}
// regression test for bug 1098
{
@ -57,7 +73,7 @@ void test_eigensolver_generalized_real()
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );
// some trivial but implementation-wise tricky cases
// some trivial but implementation-wise special cases
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );

View File

@ -58,6 +58,8 @@ template<typename Scalar,int Size> void homogeneous(void)
T2MatrixType t2 = T2MatrixType::Random();
VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous());
VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous());
VERIFY_IS_APPROX(t2 * (v0.homogeneous().asDiagonal()), t2 * hv0.asDiagonal());
VERIFY_IS_APPROX((v0.homogeneous().asDiagonal()) * t2, hv0.asDiagonal() * t2);
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
v0.transpose().rowwise().homogeneous() * t2);

View File

@ -49,11 +49,20 @@ template<typename MatrixType> void real_qz(const MatrixType& m)
for (Index i=0; i<A.cols(); i++)
for (Index j=0; j<i; j++) {
if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
{
std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
all_zeros = false;
}
if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
{
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
all_zeros = false;
}
if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
{
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
all_zeros = false;
}
}
VERIFY_IS_EQUAL(all_zeros, true);
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);

View File

@ -202,7 +202,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// across k dimension.
const TensorOpCost cost =
contractionCost(m, n, bm, bn, bk, shard_by_col, false);
Index num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
static_cast<double>(n) * m, cost, this->m_device.numThreads());
// TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
@ -301,7 +301,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
class Context {
public:
Context(const Device& device, int num_threads, LhsMapper& lhs,
RhsMapper& rhs, Scalar* buffer, Index m, Index n, Index k, Index bm,
RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
Index gn, Index nm0, Index nn0, bool shard_by_col,
bool parallel_pack)
@ -309,13 +309,13 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
lhs_(lhs),
rhs_(rhs),
buffer_(buffer),
output_(buffer, m),
output_(buffer, tm),
num_threads_(num_threads),
shard_by_col_(shard_by_col),
parallel_pack_(parallel_pack),
m_(m),
n_(n),
k_(k),
m_(tm),
n_(tn),
k_(tk),
bm_(bm),
bn_(bn),
bk_(bk),

View File

@ -106,7 +106,7 @@ static EIGEN_STRONG_INLINE void wait_until_ready(SyncType* n) {
// Build a thread pool device on top the an existing pool of threads.
struct ThreadPoolDevice {
// The ownership of the thread pool remains with the caller.
ThreadPoolDevice(ThreadPoolInterface* pool, size_t num_cores) : pool_(pool), num_threads_(num_cores) { }
ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores) : pool_(pool), num_threads_(num_cores) { }
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
return internal::aligned_malloc(num_bytes);
@ -130,7 +130,7 @@ struct ThreadPoolDevice {
::memset(buffer, c, n);
}
EIGEN_STRONG_INLINE size_t numThreads() const {
EIGEN_STRONG_INLINE int numThreads() const {
return num_threads_;
}
@ -182,7 +182,7 @@ struct ThreadPoolDevice {
std::function<void(Index, Index)> f) const {
typedef TensorCostModel<ThreadPoolDevice> CostModel;
if (n <= 1 || numThreads() == 1 ||
CostModel::numThreads(n, cost, numThreads()) == 1) {
CostModel::numThreads(n, cost, static_cast<int>(numThreads())) == 1) {
f(0, n);
return;
}
@ -242,7 +242,7 @@ struct ThreadPoolDevice {
// Recursively divide size into halves until we reach block_size.
// Division code rounds mid to block_size, so we are guaranteed to get
// block_count leaves that do actual computations.
Barrier barrier(block_count);
Barrier barrier(static_cast<unsigned int>(block_count));
std::function<void(Index, Index)> handleRange;
handleRange = [=, &handleRange, &barrier, &f](Index first, Index last) {
if (last - first <= block_size) {
@ -268,7 +268,7 @@ struct ThreadPoolDevice {
private:
ThreadPoolInterface* pool_;
size_t num_threads_;
int num_threads_;
};

View File

@ -426,6 +426,20 @@ struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type,
m_arg3Impl(op.arg3Expression(), device)
{
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg2Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg3Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
typename internal::traits<Arg2Type>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
typename internal::traits<Arg3Type>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
}

View File

@ -227,22 +227,6 @@ struct traits<TensorCwiseTernaryOp<TernaryOp, Arg1XprType, Arg2XprType, Arg3XprT
TernaryOp(typename Arg1XprType::Scalar,
typename Arg2XprType::Scalar,
typename Arg3XprType::Scalar)>::type Scalar;
EIGEN_STATIC_ASSERT(
(internal::is_same<typename traits<Arg1XprType>::StorageKind,
typename traits<Arg2XprType>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT(
(internal::is_same<typename traits<Arg1XprType>::StorageKind,
typename traits<Arg3XprType>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT(
(internal::is_same<typename traits<Arg1XprType>::Index,
typename traits<Arg2XprType>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
EIGEN_STATIC_ASSERT(
(internal::is_same<typename traits<Arg1XprType>::Index,
typename traits<Arg3XprType>::Index>::value),
STORAGE_INDEX_MUST_MATCH)
typedef traits<Arg1XprType> XprTraits;
typedef typename traits<Arg1XprType>::StorageKind StorageKind;
typedef typename traits<Arg1XprType>::Index Index;

View File

@ -84,6 +84,14 @@ struct functor_traits<scalar_sigmoid_op<T> > {
};
template<typename Reducer, typename Device>
struct reducer_traits {
enum {
Cost = 1,
PacketAccess = false
};
};
// Standard reduction functors
template <typename T> struct SumReducer
{
@ -119,6 +127,15 @@ template <typename T> struct SumReducer
}
};
template <typename T, typename Device>
struct reducer_traits<SumReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = PacketType<T, Device>::HasAdd
};
};
template <typename T> struct MeanReducer
{
static const bool PacketAccess = packet_traits<T>::HasAdd && !NumTraits<T>::IsInteger;
@ -162,6 +179,15 @@ template <typename T> struct MeanReducer
DenseIndex packetCount_;
};
template <typename T, typename Device>
struct reducer_traits<MeanReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = PacketType<T, Device>::HasAdd
};
};
template <typename T> struct MaxReducer
{
static const bool PacketAccess = packet_traits<T>::HasMax;
@ -195,6 +221,15 @@ template <typename T> struct MaxReducer
}
};
template <typename T, typename Device>
struct reducer_traits<MaxReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = PacketType<T, Device>::HasMax
};
};
template <typename T> struct MinReducer
{
static const bool PacketAccess = packet_traits<T>::HasMin;
@ -228,6 +263,14 @@ template <typename T> struct MinReducer
}
};
template <typename T, typename Device>
struct reducer_traits<MinReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = PacketType<T, Device>::HasMin
};
};
template <typename T> struct ProdReducer
{
@ -263,6 +306,14 @@ template <typename T> struct ProdReducer
}
};
template <typename T, typename Device>
struct reducer_traits<ProdReducer<T>, Device> {
enum {
Cost = NumTraits<T>::MulCost,
PacketAccess = PacketType<T, Device>::HasMul
};
};
struct AndReducer
{
@ -280,6 +331,15 @@ struct AndReducer
}
};
template <typename Device>
struct reducer_traits<AndReducer, Device> {
enum {
Cost = 1,
PacketAccess = false
};
};
struct OrReducer {
static const bool PacketAccess = false;
static const bool IsStateful = false;
@ -295,6 +355,15 @@ struct OrReducer {
}
};
template <typename Device>
struct reducer_traits<OrReducer, Device> {
enum {
Cost = 1,
PacketAccess = false
};
};
// Argmin/Argmax reducers
template <typename T> struct ArgMaxTupleReducer
{
@ -312,6 +381,15 @@ template <typename T> struct ArgMaxTupleReducer
}
};
template <typename T, typename Device>
struct reducer_traits<ArgMaxTupleReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = false
};
};
template <typename T> struct ArgMinTupleReducer
{
static const bool PacketAccess = false;
@ -328,6 +406,14 @@ template <typename T> struct ArgMinTupleReducer
}
};
template <typename T, typename Device>
struct reducer_traits<ArgMinTupleReducer<T>, Device> {
enum {
Cost = NumTraits<T>::AddCost,
PacketAccess = false
};
};
// Random number generation
namespace {

View File

@ -47,22 +47,39 @@ template <> struct max_n_1<0> {
// Default packet types
template <typename Scalar, typename Device>
struct PacketType {
struct PacketType : internal::packet_traits<Scalar> {
typedef typename internal::packet_traits<Scalar>::type type;
enum { size = internal::unpacket_traits<type>::size };
};
// For CUDA packet types when using a GpuDevice
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__) && defined(EIGEN_HAS_CUDA_FP16)
template <>
struct PacketType<float, GpuDevice> {
typedef float4 type;
static const int size = 4;
};
template <>
struct PacketType<double, GpuDevice> {
typedef double2 type;
struct PacketType<half, GpuDevice> {
typedef half2 type;
static const int size = 2;
enum {
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 0,
HasMin = 1,
HasMax = 1,
HasConj = 0,
HasSetLinear = 0,
HasBlend = 0,
HasDiv = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasExp = 1,
HasLog = 1,
HasLog1p = 0,
HasLog10 = 0,
HasPow = 1,
};
};
#endif

View File

@ -148,7 +148,7 @@ struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); }
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
protected:
TensorEvaluator<ArgType, Device> m_impl;

View File

@ -130,15 +130,17 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
if (block == 0) {
// We're the first block to run, initialize the output value
atomicExch(output, reducer.initialize());
unsigned int old = atomicExch(semaphore, 2u);
assert(old == 1u);
__threadfence();
atomicExch(semaphore, 2u);
}
else {
// Wait for the first block to initialize the output value.
// Use atomicCAS here to ensure that the reads aren't cached
unsigned int val = atomicCAS(semaphore, 2u, 2u);
while (val < 2u) {
unsigned int val;
do {
val = atomicCAS(semaphore, 2u, 2u);
}
while (val < 2u);
}
}
}
@ -166,12 +168,8 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
}
if (gridDim.x > 1 && threadIdx.x == 0) {
unsigned int ticket = atomicInc(semaphore, UINT_MAX);
assert(ticket >= 2u);
if (ticket == gridDim.x + 1) {
// We're the last block, reset the semaphore
*semaphore = 0;
}
// Let the last block reset the semaphore
atomicInc(semaphore, gridDim.x + 1);
}
}
@ -330,10 +328,10 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats and half floats.
#ifdef EIGEN_HAS_CUDA_FP16
#ifdef EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && Op::PacketAccess));
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
@ -348,7 +346,7 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
return;
}
FullReductionLauncher<Self, Op, OutputType, Op::PacketAccess>::run(self, reducer, device, output, num_coeffs);
FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
}
};
@ -610,7 +608,7 @@ struct InnerReducer<Self, Op, GpuDevice> {
#ifdef EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && Op::PacketAccess));
(internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
@ -629,7 +627,7 @@ struct InnerReducer<Self, Op, GpuDevice> {
return true;
}
return InnerReductionLauncher<Self, Op, OutputType, Op::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
}
};

View File

@ -81,7 +81,7 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
typedef typename XprType::Index Index;
static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
@ -106,7 +106,7 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
m_output(NULL) {
// Accumulating a scalar isn't supported.
EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(m_axis >= 0 && m_axis < NumDims);
// Compute stride of scan axis
@ -122,7 +122,7 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
return m_dimensions;
return m_dimensions;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
@ -136,7 +136,7 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
return true;
}
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_output + index);
@ -152,6 +152,10 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
return m_output[index];
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const {
return TensorOpCost(sizeof(CoeffReturnType), 0, 0);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
if (m_output != NULL) {
m_device.deallocate(m_output);