fix compilation of the doc and started a page dedicated to high performance and or BLAS users

This commit is contained in:
Gael Guennebaud 2009-07-27 18:50:39 +02:00
parent 5f3606bce9
commit 7579360672
6 changed files with 112 additions and 2 deletions

101
doc/I02_HiPerformance.dox Normal file
View File

@ -0,0 +1,101 @@
namespace Eigen {
/** \page HiPerformance Advanced - Using Eigen with high performance
<table class="tutorial_code">
<tr>
<td>BLAS equivalent routine</td>
<td>Efficient version <br> (compile to a single optimized evaluation)</td>
<td>Less efficient equivalent version <br> (requires multiple evaluations)</td>
<td>comments</td>
</tr>
<tr>
<td>GEMM</td>
<td>m1 = s1 * m2 * m3</td>
<td>m1 = s1 * (m2 * m3)</td>
<td>This is because m2 * m3 is evaluated by the scalar product.</td>
</tr>
<tr>
<td>GEMM</td>
<td>m1 += s1 * m2.adjoint() * m3</td>
<td>m1 += (s1 * m2).adjoint() * m3</td>
<td>This is because our expression analyser stops at the first transpose expression and cannot extract the nested scalar multiple.</td>
</tr>
<tr>
<td>GEMM</td>
<td>m1 += m2.adjoint() * m3</td>
<td>m1 += m2.conjugate().transpose() * m3</td>
<td>For the same reason. Use .adjoint() or .transpose().conjugate()</td>
</tr>
<tr>
<td>GEMM</td>
<td>m1 -= (-(s0*m2).conjugate()*s1) * (s2 * m3.adjoint() * s3)</td>
<td></td>
<td>Note that s0 is automatically conjugated during the simplification of the expression.</td>
</tr>
<tr>
<td>SYR</td>
<td>m.sefadjointView<LowerTriangular>().rankUpdate(v,s)</td>
<td></td>
<td>Computes m += s * v * v.adjoint()</td>
</tr>
<tr>
<td>SYR2</td>
<td>m.sefadjointView<LowerTriangular>().rankUpdate(u,v,s)</td>
<td></td>
<td>Computes m += s * u * v.adjoint() + s * v * u.adjoint()</td>
</tr>
<tr>
<td>SYRK</td>
<td>m1.sefadjointView<UpperTriangular>().rankUpdate(m2.adjoint(),s)</td>
<td></td>
<td>Computes m1 += s * m2.adjoint() * m2</td>
</tr>
<tr>
<td>SYMM/HEMM</td>
<td>m3 -= s1 * m1.sefadjointView<UpperTriangular>() * m2.adjoint()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYMM/HEMM</td>
<td>m3 += s1 * m2.transpose() * m1.conjugate().sefadjointView<UpperTriangular>()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRMM</td>
<td>m3 -= s1 * m1.triangularView<UnitUpperTriangular>() * m2.adjoint()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRSV / TRSM</td>
<td>m1.adjoint().triangularView<UnitLowerTriangular>().solveInPlace(m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</table>
*/
}

View File

@ -4,6 +4,6 @@ Matrix3f y = Matrix3f::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the matrix y:" << endl << y << endl;
Matrix3f x;
m.householderQr().solve(y, &x));
m.householderQr().solve(y, &x);
assert(y.isApprox(m*x));
cout << "Here is a solution x to the equation mx=y:" << endl << x << endl;

View File

@ -1 +1 @@
cout << Vector3i(2,5,6).asDiagonal() << endl;
cout << Matrix3i(Vector3i(2,5,6).asDiagonal()) << endl;

View File

@ -1,3 +1,5 @@
#warning deprecated
/* deprecated
Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the upper-triangular matrix extracted from m:" << endl
@ -6,3 +8,4 @@ cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl
<< m.part<Eigen::StrictlyUpperTriangular>() << endl;
cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl
<< m.part<Eigen::UnitLowerTriangular>() << endl;
*/

View File

@ -1,3 +1,5 @@
#warning deprecated
/*
Matrix3d m = Matrix3d::Zero();
m.part<Eigen::UpperTriangular>().setOnes();
cout << "Here is the matrix m:" << endl << m << endl;
@ -7,3 +9,4 @@ cout << "Here is the matrix n:" << endl << n << endl;
cout << "And now here is m.inverse()*n, taking advantage of the fact that"
" m is upper-triangular:" << endl
<< m.marked<Eigen::UpperTriangular>().solveTriangular(n);
*/

View File

@ -1,3 +1,5 @@
#warning deprecated
/*
Matrix3d m = Matrix3d::Zero();
m.part<Eigen::StrictlyUpperTriangular>().setOnes();
cout << "Here is the matrix m:" << endl << m << endl;
@ -6,3 +8,4 @@ cout << "And let us now compute m*m.adjoint() in a very optimized way" << endl
Matrix3d n;
n.part<Eigen::SelfAdjoint>() = (m*m.adjoint()).lazy();
cout << "The result is:" << endl << n << endl;
*/