mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-03-07 18:27:40 +08:00
merge default and evaluator branches
This commit is contained in:
commit
74b1d79d77
@ -4,10 +4,14 @@
|
||||
## # The following are required to uses Dart and the Cdash dashboard
|
||||
## ENABLE_TESTING()
|
||||
## INCLUDE(CTest)
|
||||
set(CTEST_PROJECT_NAME "Eigen3.2")
|
||||
set(CTEST_PROJECT_NAME "Eigen")
|
||||
set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC")
|
||||
|
||||
set(CTEST_DROP_METHOD "http")
|
||||
set(CTEST_DROP_SITE "manao.inria.fr")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen3.2")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen")
|
||||
set(CTEST_DROP_SITE_CDASH TRUE)
|
||||
set(CTEST_PROJECT_SUBPROJECTS
|
||||
Official
|
||||
Unsupported
|
||||
)
|
||||
|
@ -309,13 +309,6 @@ template<> struct ldlt_inplace<Lower>
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
@ -351,6 +344,7 @@ template<> struct ldlt_inplace<Lower>
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
|
||||
|
@ -49,7 +49,7 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
|
||||
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
|
||||
EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline Index rows() const { return m_expression.rows(); }
|
||||
|
@ -45,6 +45,18 @@ struct CommaInitializer
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
EIGEN_DEVICE_FUNC
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
@ -110,7 +122,7 @@ struct CommaInitializer
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
|
@ -378,8 +378,6 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
Scalar trace() const;
|
||||
|
||||
/////////// Array module ///////////
|
||||
|
||||
template<int p> EIGEN_DEVICE_FUNC RealScalar lpNorm() const;
|
||||
|
||||
EIGEN_DEVICE_FUNC MatrixBase<Derived>& matrix() { return *this; }
|
||||
@ -387,8 +385,10 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
/** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
|
||||
* \sa ArrayBase::matrix() */
|
||||
EIGEN_DEVICE_FUNC ArrayWrapper<Derived> array() { return derived(); }
|
||||
EIGEN_DEVICE_FUNC const ArrayWrapper<const Derived> array() const { return derived(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return derived(); }
|
||||
/** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix
|
||||
* \sa ArrayBase::matrix() */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const { return derived(); }
|
||||
|
||||
/////////// LU module ///////////
|
||||
|
||||
|
@ -300,7 +300,8 @@ struct inplace_transpose_selector<MatrixType,false> { // non square matrix
|
||||
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
||||
* If you just need the transpose of a matrix, use transpose().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
||||
*
|
||||
* \sa transpose(), adjoint(), adjointInPlace() */
|
||||
template<typename Derived>
|
||||
@ -331,6 +332,7 @@ inline void DenseBase<Derived>::transposeInPlace()
|
||||
* If you just need the adjoint of a matrix, use adjoint().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
||||
*
|
||||
* \sa transpose(), adjoint(), transposeInPlace() */
|
||||
template<typename Derived>
|
||||
|
@ -1128,6 +1128,8 @@ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder,
|
||||
enum { PacketSize = packet_traits<Scalar>::size };
|
||||
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
|
||||
EIGEN_UNUSED_VARIABLE(stride);
|
||||
EIGEN_UNUSED_VARIABLE(offset);
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
@ -1215,6 +1217,8 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, Pan
|
||||
::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
|
||||
{
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
|
||||
EIGEN_UNUSED_VARIABLE(stride);
|
||||
EIGEN_UNUSED_VARIABLE(offset);
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
Index packet_cols = (cols/nr) * nr;
|
||||
@ -1257,6 +1261,7 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, Pan
|
||||
template<typename Scalar, typename Index, int nr, bool Conjugate, bool PanelMode>
|
||||
struct gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, PanelMode>
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
enum { PacketSize = packet_traits<Scalar>::size };
|
||||
EIGEN_DONT_INLINE void operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride=0, Index offset=0);
|
||||
};
|
||||
@ -1266,6 +1271,8 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, Pan
|
||||
::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
|
||||
{
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
|
||||
EIGEN_UNUSED_VARIABLE(stride);
|
||||
EIGEN_UNUSED_VARIABLE(offset);
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
Index packet_cols = (cols/nr) * nr;
|
||||
@ -1276,12 +1283,18 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, Pan
|
||||
if(PanelMode) count += nr * offset;
|
||||
for(Index k=0; k<depth; k++)
|
||||
{
|
||||
const Scalar* b0 = &rhs[k*rhsStride + j2];
|
||||
blockB[count+0] = cj(b0[0]);
|
||||
blockB[count+1] = cj(b0[1]);
|
||||
if(nr==4) blockB[count+2] = cj(b0[2]);
|
||||
if(nr==4) blockB[count+3] = cj(b0[3]);
|
||||
count += nr;
|
||||
if (nr == PacketSize) {
|
||||
Packet A = ploadu<Packet>(&rhs[k*rhsStride + j2]);
|
||||
pstoreu(blockB+count, cj.pconj(A));
|
||||
count += PacketSize;
|
||||
} else {
|
||||
const Scalar* b0 = &rhs[k*rhsStride + j2];
|
||||
blockB[count+0] = cj(b0[0]);
|
||||
blockB[count+1] = cj(b0[1]);
|
||||
if(nr==4) blockB[count+2] = cj(b0[2]);
|
||||
if(nr==4) blockB[count+3] = cj(b0[3]);
|
||||
count += nr;
|
||||
}
|
||||
}
|
||||
// skip what we have after
|
||||
if(PanelMode) count += nr * (stride-offset-depth);
|
||||
|
@ -80,11 +80,8 @@ EIGEN_DONT_INLINE static void run(
|
||||
Index rows, Index cols,
|
||||
const LhsScalar* lhs, Index lhsStride,
|
||||
const RhsScalar* rhs, Index rhsIncr,
|
||||
ResScalar* res, Index
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
resIncr
|
||||
#endif
|
||||
, RhsScalar alpha);
|
||||
ResScalar* res, Index resIncr,
|
||||
RhsScalar alpha);
|
||||
};
|
||||
|
||||
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
||||
@ -92,12 +89,10 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,Co
|
||||
Index rows, Index cols,
|
||||
const LhsScalar* lhs, Index lhsStride,
|
||||
const RhsScalar* rhs, Index rhsIncr,
|
||||
ResScalar* res, Index
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
resIncr
|
||||
#endif
|
||||
, RhsScalar alpha)
|
||||
ResScalar* res, Index resIncr,
|
||||
RhsScalar alpha)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(resIncr);
|
||||
eigen_internal_assert(resIncr==1);
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
@ -350,7 +345,7 @@ EIGEN_DONT_INLINE static void run(
|
||||
Index rows, Index cols,
|
||||
const LhsScalar* lhs, Index lhsStride,
|
||||
const RhsScalar* rhs, Index rhsIncr,
|
||||
ResScalar* res, Index resIncr,
|
||||
ResScalar* res, Index resIncr,
|
||||
ResScalar alpha);
|
||||
};
|
||||
|
||||
@ -364,6 +359,7 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,Co
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(rhsIncr);
|
||||
eigen_internal_assert(rhsIncr==1);
|
||||
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
#endif
|
||||
|
@ -113,9 +113,9 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
|
||||
|
||||
for (size_t i=starti; i<alignedStart; ++i)
|
||||
{
|
||||
res[i] += t0 * A0[i] + t1 * A1[i];
|
||||
t2 += numext::conj(A0[i]) * rhs[i];
|
||||
t3 += numext::conj(A1[i]) * rhs[i];
|
||||
res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
|
||||
t2 += cj1.pmul(A0[i], rhs[i]);
|
||||
t3 += cj1.pmul(A1[i], rhs[i]);
|
||||
}
|
||||
// Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
|
||||
// gcc 4.2 does this optimization automatically.
|
||||
|
@ -252,7 +252,12 @@
|
||||
#endif
|
||||
|
||||
// Suppresses 'unused variable' warnings.
|
||||
#define EIGEN_UNUSED_VARIABLE(var) (void)var;
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
template<typename T> void ignore_unused_variable(const T&) {}
|
||||
}
|
||||
}
|
||||
#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var);
|
||||
|
||||
#if !defined(EIGEN_ASM_COMMENT)
|
||||
#if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
|
||||
|
@ -274,12 +274,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
|
||||
// The defined(_mm_free) is just here to verify that this MSVC version
|
||||
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
|
||||
// functions. This may not always be the case and we just try to be safe.
|
||||
#if defined(_MSC_VER) && defined(_mm_free)
|
||||
#if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = generic_aligned_realloc(ptr,new_size,old_size);
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = handmade_aligned_realloc(ptr,new_size,old_size);
|
||||
@ -464,7 +464,7 @@ template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *
|
||||
* There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
|
||||
*/
|
||||
template<typename Scalar, typename Index>
|
||||
static inline Index first_aligned(const Scalar* array, Index size)
|
||||
inline Index first_aligned(const Scalar* array, Index size)
|
||||
{
|
||||
enum { PacketSize = packet_traits<Scalar>::size,
|
||||
PacketAlignedMask = PacketSize-1
|
||||
@ -492,7 +492,7 @@ static inline Index first_aligned(const Scalar* array, Index size)
|
||||
/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
|
||||
*/
|
||||
template<typename Index>
|
||||
inline static Index first_multiple(Index size, Index base)
|
||||
inline Index first_multiple(Index size, Index base)
|
||||
{
|
||||
return ((size+base-1)/base)*base;
|
||||
}
|
||||
|
@ -34,8 +34,9 @@ struct quaternionbase_assign_impl;
|
||||
template<class Derived>
|
||||
class QuaternionBase : public RotationBase<Derived, 3>
|
||||
{
|
||||
public:
|
||||
typedef RotationBase<Derived, 3> Base;
|
||||
public:
|
||||
|
||||
using Base::operator*;
|
||||
using Base::derived;
|
||||
|
||||
@ -203,6 +204,8 @@ public:
|
||||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
@ -223,10 +226,10 @@ struct traits<Quaternion<_Scalar,_Options> >
|
||||
template<typename _Scalar, int _Options>
|
||||
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
|
||||
{
|
||||
public:
|
||||
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
|
||||
enum { IsAligned = internal::traits<Quaternion>::IsAligned };
|
||||
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion)
|
||||
@ -334,9 +337,9 @@ template<typename _Scalar, int _Options>
|
||||
class Map<const Quaternion<_Scalar>, _Options >
|
||||
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
|
||||
{
|
||||
public:
|
||||
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
|
||||
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
@ -344,7 +347,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
||||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
@ -371,9 +374,9 @@ template<typename _Scalar, int _Options>
|
||||
class Map<Quaternion<_Scalar>, _Options >
|
||||
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
|
||||
{
|
||||
public:
|
||||
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
|
||||
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename internal::traits<Map>::Coefficients Coefficients;
|
||||
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map)
|
||||
@ -464,7 +467,7 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
||||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// in the literature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv = this->vec().cross(v);
|
||||
uv += uv;
|
||||
@ -667,10 +670,10 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
|
||||
{
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
double d = abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return static_cast<Scalar>(2 * acos(d));
|
||||
return Scalar(2) * acos(d);
|
||||
}
|
||||
|
||||
|
||||
|
@ -62,10 +62,10 @@ public:
|
||||
template<int Dim, int Mode, int Options>
|
||||
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
|
||||
{
|
||||
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
|
||||
res.prescale(factor());
|
||||
return res;
|
||||
}
|
||||
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
|
||||
res.prescale(factor());
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Concatenates a uniform scaling and a linear transformation matrix */
|
||||
// TODO returns an expression
|
||||
|
@ -530,9 +530,9 @@ public:
|
||||
|
||||
inline Transform& operator=(const UniformScaling<Scalar>& t);
|
||||
inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
|
||||
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator*(const UniformScaling<Scalar>& s) const
|
||||
inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
|
||||
{
|
||||
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode),Options> res = *this;
|
||||
TransformTimeDiagonalReturnType res = *this;
|
||||
res.scale(s.factor());
|
||||
return res;
|
||||
}
|
||||
|
@ -12,6 +12,14 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#if defined(DCOMPLEX)
|
||||
#define PASTIX_COMPLEX COMPLEX
|
||||
#define PASTIX_DCOMPLEX DCOMPLEX
|
||||
#else
|
||||
#define PASTIX_COMPLEX std::complex<float>
|
||||
#define PASTIX_DCOMPLEX std::complex<double>
|
||||
#endif
|
||||
|
||||
/** \ingroup PaStiXSupport_Module
|
||||
* \brief Interface to the PaStix solver
|
||||
*
|
||||
@ -74,14 +82,14 @@ namespace internal
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<COMPLEX*>(vals), perm, invp, reinterpret_cast<COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_COMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex<double> *vals, int *perm, int * invp, std::complex<double> *x, int nbrhs, int *iparm, double *dparm)
|
||||
{
|
||||
if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; }
|
||||
if (nbrhs == 0) {x = NULL; nbrhs=1;}
|
||||
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<DCOMPLEX*>(vals), perm, invp, reinterpret_cast<DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX*>(vals), perm, invp, reinterpret_cast<PASTIX_DCOMPLEX*>(x), nbrhs, iparm, dparm);
|
||||
}
|
||||
|
||||
// Convert the matrix to Fortran-style Numbering
|
||||
|
@ -378,7 +378,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
||||
// and turns out to be identical to Higham's formula used already in LDLt.
|
||||
: NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
|
||||
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
|
||||
}
|
||||
|
||||
/** \returns the number of nonzero pivots in the QR decomposition.
|
||||
|
@ -372,7 +372,7 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
||||
// and turns out to be identical to Higham's formula used already in LDLt.
|
||||
: NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
|
||||
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
|
||||
}
|
||||
|
||||
/** \returns the number of nonzero pivots in the QR decomposition.
|
||||
@ -449,7 +449,7 @@ FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(cons
|
||||
|
||||
m_temp.resize(cols);
|
||||
|
||||
m_precision = NumTraits<Scalar>::epsilon() * size;
|
||||
m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
|
||||
|
||||
m_rows_transpositions.resize(size);
|
||||
m_cols_transpositions.resize(size);
|
||||
|
@ -223,7 +223,7 @@ class SparseMatrix
|
||||
|
||||
if(isCompressed())
|
||||
{
|
||||
reserve(VectorXi::Constant(outerSize(), 2));
|
||||
reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2));
|
||||
}
|
||||
return insertUncompressed(row,col);
|
||||
}
|
||||
@ -939,12 +939,13 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
|
||||
EIGEN_UNUSED_VARIABLE(Options);
|
||||
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
|
||||
|
||||
if(begin!=end)
|
||||
{
|
||||
// pass 1: count the nnz per inner-vector
|
||||
VectorXi wi(trMat.outerSize());
|
||||
Matrix<Index,Dynamic,1> wi(trMat.outerSize());
|
||||
wi.setZero();
|
||||
for(InputIterator it(begin); it!=end; ++it)
|
||||
{
|
||||
@ -1018,7 +1019,7 @@ void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
|
||||
{
|
||||
eigen_assert(!isCompressed());
|
||||
// TODO, in practice we should be able to use m_innerNonZeros for that task
|
||||
VectorXi wi(innerSize());
|
||||
Matrix<Index,Dynamic,1> wi(innerSize());
|
||||
wi.fill(-1);
|
||||
Index count = 0;
|
||||
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
|
||||
@ -1081,7 +1082,7 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
|
||||
|
||||
// prefix sum
|
||||
Index count = 0;
|
||||
VectorXi positions(dest.outerSize());
|
||||
Matrix<Index,Dynamic,1> positions(dest.outerSize());
|
||||
for (Index j=0; j<dest.outerSize(); ++j)
|
||||
{
|
||||
Index tmp = dest.m_outerIndex[j];
|
||||
|
@ -57,7 +57,7 @@ struct permut_sparsematrix_product_retval
|
||||
if(MoveOuter)
|
||||
{
|
||||
SparseMatrix<Scalar,SrcStorageOrder,Index> tmp(m_matrix.rows(), m_matrix.cols());
|
||||
VectorXi sizes(m_matrix.outerSize());
|
||||
Matrix<Index,Dynamic,1> sizes(m_matrix.outerSize());
|
||||
for(Index j=0; j<m_matrix.outerSize(); ++j)
|
||||
{
|
||||
Index jp = m_permutation.indices().coeff(j);
|
||||
@ -77,7 +77,7 @@ struct permut_sparsematrix_product_retval
|
||||
else
|
||||
{
|
||||
SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> tmp(m_matrix.rows(), m_matrix.cols());
|
||||
VectorXi sizes(tmp.outerSize());
|
||||
Matrix<Index,Dynamic,1> sizes(tmp.outerSize());
|
||||
sizes.setZero();
|
||||
PermutationMatrix<Dynamic,Dynamic,Index> perm;
|
||||
if((Side==OnTheLeft) ^ Transposed)
|
||||
|
@ -48,6 +48,12 @@ include_directories(
|
||||
# set(DEFAULT_LIBRARIES ${MKL_LIBRARIES})
|
||||
# endif (MKL_FOUND)
|
||||
|
||||
find_library(EIGEN_BTL_RT_LIBRARY rt)
|
||||
# if we cannot find it easily, then we don't need it!
|
||||
if(NOT EIGEN_BTL_RT_LIBRARY)
|
||||
set(EIGEN_BTL_RT_LIBRARY "")
|
||||
endif()
|
||||
|
||||
MACRO(BTL_ADD_BENCH targetname)
|
||||
|
||||
foreach(_current_var ${ARGN})
|
||||
@ -70,7 +76,7 @@ MACRO(BTL_ADD_BENCH targetname)
|
||||
IF(BUILD_${targetname})
|
||||
ADD_EXECUTABLE(${targetname} ${_sources})
|
||||
ADD_TEST(${targetname} "${targetname}")
|
||||
target_link_libraries(${targetname} ${DEFAULT_LIBRARIES} rt)
|
||||
target_link_libraries(${targetname} ${DEFAULT_LIBRARIES} ${EIGEN_BTL_RT_LIBRARY})
|
||||
ENDIF(BUILD_${targetname})
|
||||
|
||||
ENDMACRO(BTL_ADD_BENCH)
|
||||
|
@ -102,8 +102,8 @@ BTL_DONT_INLINE void bench( int size_min, int size_max, int nb_point )
|
||||
// merge the two data
|
||||
std::vector<int> newSizes;
|
||||
std::vector<double> newFlops;
|
||||
int i=0;
|
||||
int j=0;
|
||||
unsigned int i=0;
|
||||
unsigned int j=0;
|
||||
while (i<tab_sizes.size() && j<oldSizes.size())
|
||||
{
|
||||
if (tab_sizes[i] == oldSizes[j])
|
||||
|
@ -46,7 +46,7 @@
|
||||
|
||||
#if (defined __GNUC__) && (!defined __INTEL_COMPILER) && !defined(__arm__) && !defined(__powerpc__)
|
||||
#define BTL_DISABLE_SSE_EXCEPTIONS() { \
|
||||
int aux; \
|
||||
int aux = 0; \
|
||||
asm( \
|
||||
"stmxcsr %[aux] \n\t" \
|
||||
"orl $32832, %[aux] \n\t" \
|
||||
|
@ -29,7 +29,7 @@ BTL_DONT_INLINE void init_row(Vector & X, int size, int row){
|
||||
|
||||
X.resize(size);
|
||||
|
||||
for (int j=0;j<X.size();j++){
|
||||
for (unsigned int j=0;j<X.size();j++){
|
||||
X[j]=typename Vector::value_type(init_function(row,j));
|
||||
}
|
||||
}
|
||||
@ -42,7 +42,7 @@ BTL_DONT_INLINE void init_row(Vector & X, int size, int row){
|
||||
template<double init_function(int,int),class Vector>
|
||||
BTL_DONT_INLINE void init_matrix(Vector & A, int size){
|
||||
A.resize(size);
|
||||
for (int row=0; row<A.size() ; row++){
|
||||
for (unsigned int row=0; row<A.size() ; row++){
|
||||
init_row<init_function>(A[row],size,row);
|
||||
}
|
||||
}
|
||||
@ -50,11 +50,11 @@ BTL_DONT_INLINE void init_matrix(Vector & A, int size){
|
||||
template<double init_function(int,int),class Matrix>
|
||||
BTL_DONT_INLINE void init_matrix_symm(Matrix& A, int size){
|
||||
A.resize(size);
|
||||
for (int row=0; row<A.size() ; row++)
|
||||
for (unsigned int row=0; row<A.size() ; row++)
|
||||
A[row].resize(size);
|
||||
for (int row=0; row<A.size() ; row++){
|
||||
for (unsigned int row=0; row<A.size() ; row++){
|
||||
A[row][row] = init_function(row,row);
|
||||
for (int col=0; col<row ; col++){
|
||||
for (unsigned int col=0; col<row ; col++){
|
||||
double x = init_function(row,col);
|
||||
A[row][col] = A[col][row] = x;
|
||||
}
|
||||
|
@ -29,7 +29,7 @@ void init_vector(Vector & X, int size){
|
||||
|
||||
X.resize(size);
|
||||
|
||||
for (int i=0;i<X.size();i++){
|
||||
for (unsigned int i=0;i<X.size();i++){
|
||||
X[i]=typename Vector::value_type(init_function(i));
|
||||
}
|
||||
}
|
||||
|
@ -78,7 +78,7 @@ public:
|
||||
// time measurement
|
||||
action.calculate();
|
||||
_chronos.start();
|
||||
for (int ii=0;ii<_nb_calc;ii++)
|
||||
for (unsigned int ii=0;ii<_nb_calc;ii++)
|
||||
{
|
||||
action.calculate();
|
||||
}
|
||||
|
@ -34,7 +34,7 @@
|
||||
// timer -------------------------------------------------------------------//
|
||||
|
||||
// A timer object measures CPU time.
|
||||
#ifdef _MSC_VER
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
@ -87,6 +87,48 @@
|
||||
|
||||
}; // Portable_Timer
|
||||
|
||||
#elif defined(__APPLE__)
|
||||
#include <CoreServices/CoreServices.h>
|
||||
#include <mach/mach_time.h>
|
||||
|
||||
|
||||
class Portable_Timer
|
||||
{
|
||||
public:
|
||||
|
||||
Portable_Timer()
|
||||
{
|
||||
}
|
||||
|
||||
void start()
|
||||
{
|
||||
m_start_time = double(mach_absolute_time())*1e-9;;
|
||||
|
||||
}
|
||||
|
||||
void stop()
|
||||
{
|
||||
m_stop_time = double(mach_absolute_time())*1e-9;;
|
||||
|
||||
}
|
||||
|
||||
double elapsed()
|
||||
{
|
||||
return user_time();
|
||||
}
|
||||
|
||||
double user_time()
|
||||
{
|
||||
return m_stop_time - m_start_time;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
double m_stop_time, m_start_time;
|
||||
|
||||
}; // Portable_Timer (Apple)
|
||||
|
||||
#else
|
||||
|
||||
#include <sys/time.h>
|
||||
@ -138,7 +180,7 @@ private:
|
||||
int m_clkid;
|
||||
double m_stop_time, m_start_time;
|
||||
|
||||
}; // Portable_Timer
|
||||
}; // Portable_Timer (Linux)
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -52,8 +52,8 @@ public :
|
||||
static BTL_DONT_INLINE void matrix_from_stl(gene_matrix & A, stl_matrix & A_stl){
|
||||
A.resize(A_stl[0].size(), A_stl.size());
|
||||
|
||||
for (int j=0; j<A_stl.size() ; j++){
|
||||
for (int i=0; i<A_stl[j].size() ; i++){
|
||||
for (unsigned int j=0; j<A_stl.size() ; j++){
|
||||
for (unsigned int i=0; i<A_stl[j].size() ; i++){
|
||||
A.coeffRef(i,j) = A_stl[j][i];
|
||||
}
|
||||
}
|
||||
@ -62,13 +62,13 @@ public :
|
||||
static BTL_DONT_INLINE void vector_from_stl(gene_vector & B, stl_vector & B_stl){
|
||||
B.resize(B_stl.size(),1);
|
||||
|
||||
for (int i=0; i<B_stl.size() ; i++){
|
||||
for (unsigned int i=0; i<B_stl.size() ; i++){
|
||||
B.coeffRef(i) = B_stl[i];
|
||||
}
|
||||
}
|
||||
|
||||
static BTL_DONT_INLINE void vector_to_stl(gene_vector & B, stl_vector & B_stl){
|
||||
for (int i=0; i<B_stl.size() ; i++){
|
||||
for (unsigned int i=0; i<B_stl.size() ; i++){
|
||||
B_stl[i] = B.coeff(i);
|
||||
}
|
||||
}
|
||||
|
@ -249,7 +249,7 @@ For an introduction on linear solvers and decompositions, check this \link Tutor
|
||||
<dt><b>Implicit Multi Threading (MT)</b></dt>
|
||||
<dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product rountines.</dd>
|
||||
<dt><b>Explicit Multi Threading (MT)</b></dt>
|
||||
<dd>Means the algorithm is explicitely parallelized to take advantage of multicore processors via OpenMP.</dd>
|
||||
<dd>Means the algorithm is explicitly parallelized to take advantage of multicore processors via OpenMP.</dd>
|
||||
<dt><b>Meta-unroller</b></dt>
|
||||
<dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
|
||||
<dt><b></b></dt>
|
||||
|
@ -39,7 +39,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
\endcode
|
||||
|
||||
\warning note that all functions generating random matrices are \b not re-entrant nor thread-safe. Those include DenseBase::Random(), and DenseBase::setRandom() despite a call to Eigen::initParallel(). This is because these functions are based on std::rand which is not re-entrant. For thread-safe random generator, we recommend the use of boost::random of c++11 random feature.
|
||||
\warning note that all functions generating random matrices are \b not re-entrant nor thread-safe. Those include DenseBase::Random(), and DenseBase::setRandom() despite a call to Eigen::initParallel(). This is because these functions are based on std::rand which is not re-entrant. For thread-safe random generator, we recommend the use of boost::random or c++11 random feature.
|
||||
|
||||
In the case your application is parallelized with OpenMP, you might want to disable Eigen's own parallization as detailed in the previous section.
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
MatrixXd ones = MatrixXd::Ones(3,3);
|
||||
EigenSolver<MatrixXd> es(ones);
|
||||
cout << "The first eigenvector of the 3x3 matrix of ones is:"
|
||||
<< endl << es.eigenvectors().col(1) << endl;
|
||||
cout << "The first eigenvector of the 3x3 matrix of ones is:"
|
||||
<< endl << es.eigenvectors().col(0) << endl;
|
||||
|
@ -173,21 +173,14 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
Scalar s1 = internal::random<Scalar>();
|
||||
|
||||
// these tests are mostly to check possible compilation issues.
|
||||
// VERIFY_IS_APPROX(m1.sin(), std::sin(m1));
|
||||
VERIFY_IS_APPROX(m1.sin(), sin(m1));
|
||||
// VERIFY_IS_APPROX(m1.cos(), std::cos(m1));
|
||||
VERIFY_IS_APPROX(m1.cos(), cos(m1));
|
||||
// VERIFY_IS_APPROX(m1.asin(), std::asin(m1));
|
||||
VERIFY_IS_APPROX(m1.asin(), asin(m1));
|
||||
// VERIFY_IS_APPROX(m1.acos(), std::acos(m1));
|
||||
VERIFY_IS_APPROX(m1.acos(), acos(m1));
|
||||
// VERIFY_IS_APPROX(m1.tan(), std::tan(m1));
|
||||
VERIFY_IS_APPROX(m1.tan(), tan(m1));
|
||||
|
||||
VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
|
||||
// VERIFY_IS_APPROX(std::cos(m1+RealScalar(3)*m2), std::cos((m1+RealScalar(3)*m2).eval()));
|
||||
|
||||
// VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1)));
|
||||
VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1)));
|
||||
VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1)));
|
||||
|
||||
@ -196,9 +189,10 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
if(!NumTraits<Scalar>::IsComplex)
|
||||
VERIFY_IS_APPROX(numext::real(m1), m1);
|
||||
|
||||
VERIFY_IS_APPROX(m1.abs().log() , log(abs(m1)));
|
||||
// shift argument of logarithm so that it is not zero
|
||||
Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
|
||||
VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber));
|
||||
|
||||
// VERIFY_IS_APPROX(m1.exp(), std::exp(m1));
|
||||
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
|
||||
VERIFY_IS_APPROX(m1.exp(), exp(m1));
|
||||
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
|
||||
@ -242,7 +236,6 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
m2(i,j) = sqrt(m1(i,j));
|
||||
|
||||
VERIFY_IS_APPROX(m1.sqrt(), m2);
|
||||
// VERIFY_IS_APPROX(m1.sqrt(), std::sqrt(m1));
|
||||
VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1));
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,26 @@
|
||||
#define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
|
||||
// check cwise-Functions:
|
||||
VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
|
||||
VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
|
||||
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
|
||||
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename Index, typename Scalar>
|
||||
typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
|
||||
block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType> void block(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
@ -37,6 +57,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
||||
Index c1 = internal::random<Index>(0,cols-1);
|
||||
Index c2 = internal::random<Index>(c1,cols-1);
|
||||
|
||||
block_real_only(m1, r1, r2, c1, c1, s1);
|
||||
|
||||
//check row() and col()
|
||||
VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
|
||||
//check operator(), both constant and non-constant, on row() and col()
|
||||
@ -51,7 +73,8 @@ template<typename MatrixType> void block(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
|
||||
m1.col(c1).col(0) += s1 * m1_copy.col(c2);
|
||||
VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
|
||||
|
||||
|
||||
|
||||
//check block()
|
||||
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
||||
|
||||
|
@ -179,6 +179,38 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
// restore
|
||||
if(sign == -1)
|
||||
symm = -symm;
|
||||
|
||||
// check matrices coming from linear constraints with Lagrange multipliers
|
||||
if(rows>=3)
|
||||
{
|
||||
SquareMatrixType A = symm;
|
||||
int c = internal::random<int>(0,rows-2);
|
||||
A.bottomRightCorner(c,c).setZero();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
|
||||
// check non-full rank matrices
|
||||
if(rows>=3)
|
||||
{
|
||||
int r = internal::random<int>(1,rows-1);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
|
||||
SquareMatrixType A = a * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
vecB = A * vecX;
|
||||
vecX.setZero();
|
||||
ldltlo.compute(A);
|
||||
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
|
||||
vecX = ldltlo.solve(vecB);
|
||||
VERIFY_IS_APPROX(A * vecX, vecB);
|
||||
}
|
||||
}
|
||||
|
||||
// update/downdate
|
||||
|
@ -21,6 +21,8 @@ template<typename MatrixType> void verifySizeOf(const MatrixType&)
|
||||
void test_sizeof()
|
||||
{
|
||||
CALL_SUBTEST(verifySizeOf(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST(verifySizeOf(Vector2d()) );
|
||||
CALL_SUBTEST(verifySizeOf(Vector4f()) );
|
||||
CALL_SUBTEST(verifySizeOf(Matrix4d()) );
|
||||
CALL_SUBTEST(verifySizeOf(Matrix<double, 4, 2>()) );
|
||||
CALL_SUBTEST(verifySizeOf(Matrix<bool, 7, 5>()) );
|
||||
|
Loading…
Reference in New Issue
Block a user