mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-23 18:20:47 +08:00
Evaluate argument of matrix exponential only once.
This commit is contained in:
parent
b83d9b48fa
commit
72f66d717d
@ -72,7 +72,8 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
|
||||
PlainMatrixType num, den, U, V;
|
||||
PlainMatrixType Id = PlainMatrixType::Identity(M.rows(), M.cols());
|
||||
RealScalar l1norm = M.cwise().abs().colwise().sum().maxCoeff();
|
||||
typename ei_eval<Derived>::type Meval = M.eval();
|
||||
RealScalar l1norm = Meval.cwise().abs().colwise().sum().maxCoeff();
|
||||
int squarings = 0;
|
||||
|
||||
// Choose degree of Pade approximant, depending on norm of M
|
||||
@ -81,9 +82,9 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
// Use (3,3)-Pade
|
||||
const Scalar b[] = {120., 60., 12., 1.};
|
||||
PlainMatrixType M2;
|
||||
M2 = (M * M).lazy();
|
||||
M2 = (Meval * Meval).lazy();
|
||||
num = b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
U = (Meval * num).lazy();
|
||||
V = b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 2.539398330063230e-001) {
|
||||
@ -91,10 +92,10 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
// Use (5,5)-Pade
|
||||
const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
|
||||
PlainMatrixType M2, M4;
|
||||
M2 = (M * M).lazy();
|
||||
M2 = (Meval * Meval).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
num = b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
U = (Meval * num).lazy();
|
||||
V = b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 9.504178996162932e-001) {
|
||||
@ -102,11 +103,11 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
// Use (7,7)-Pade
|
||||
const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
|
||||
PlainMatrixType M2, M4, M6;
|
||||
M2 = (M * M).lazy();
|
||||
M2 = (Meval * Meval).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
M6 = (M4 * M2).lazy();
|
||||
num = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
U = (Meval * num).lazy();
|
||||
V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else if (l1norm < 2.097847961257068e+000) {
|
||||
@ -115,12 +116,12 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
|
||||
2162160., 110880., 3960., 90., 1.};
|
||||
PlainMatrixType M2, M4, M6, M8;
|
||||
M2 = (M * M).lazy();
|
||||
M2 = (Meval * Meval).lazy();
|
||||
M4 = (M2 * M2).lazy();
|
||||
M6 = (M4 * M2).lazy();
|
||||
M8 = (M6 * M2).lazy();
|
||||
num = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
|
||||
U = (M * num).lazy();
|
||||
U = (Meval * num).lazy();
|
||||
V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
|
||||
|
||||
} else {
|
||||
@ -135,7 +136,7 @@ void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matri
|
||||
|
||||
squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
|
||||
PlainMatrixType A, A2, A4, A6;
|
||||
A = M / pow(Scalar(2), squarings);
|
||||
A = Meval / pow(Scalar(2), squarings);
|
||||
A2 = (A * A).lazy();
|
||||
A4 = (A2 * A2).lazy();
|
||||
A6 = (A4 * A2).lazy();
|
||||
|
Loading…
Reference in New Issue
Block a user