mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
add missing files
This commit is contained in:
parent
ece48a6450
commit
729960e465
6
unsupported/Eigen/src/SparseExtra/CMakeLists.txt
Normal file
6
unsupported/Eigen/src/SparseExtra/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_SparseExtra_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_SparseExtra_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/SparseExtra COMPONENT Devel
|
||||
)
|
153
unsupported/test/sparse_extra.cpp
Normal file
153
unsupported/test/sparse_extra.cpp
Normal file
@ -0,0 +1,153 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
template<typename SetterType,typename DenseType, typename Scalar, int Options>
|
||||
bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
||||
{
|
||||
typedef SparseMatrix<Scalar,Options> SparseType;
|
||||
{
|
||||
sm.setZero();
|
||||
SetterType w(sm);
|
||||
std::vector<Vector2i> remaining = nonzeroCoords;
|
||||
while(!remaining.empty())
|
||||
{
|
||||
int i = ei_random<int>(0,static_cast<int>(remaining.size())-1);
|
||||
w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
|
||||
remaining[i] = remaining.back();
|
||||
remaining.pop_back();
|
||||
}
|
||||
}
|
||||
return sm.isApprox(ref);
|
||||
}
|
||||
|
||||
template<typename SetterType,typename DenseType, typename T>
|
||||
bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
|
||||
{
|
||||
sm.setZero();
|
||||
std::vector<Vector2i> remaining = nonzeroCoords;
|
||||
while(!remaining.empty())
|
||||
{
|
||||
int i = ei_random<int>(0,static_cast<int>(remaining.size())-1);
|
||||
sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
|
||||
remaining[i] = remaining.back();
|
||||
remaining.pop_back();
|
||||
}
|
||||
return sm.isApprox(ref);
|
||||
}
|
||||
|
||||
template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref)
|
||||
{
|
||||
const int rows = ref.rows();
|
||||
const int cols = ref.cols();
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
enum { Flags = SparseMatrixType::Flags };
|
||||
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
Scalar eps = 1e-6;
|
||||
|
||||
SparseMatrixType m(rows, cols);
|
||||
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
||||
DenseVector vec1 = DenseVector::Random(rows);
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
|
||||
return;
|
||||
|
||||
// test coeff and coeffRef
|
||||
for (int i=0; i<(int)zeroCoords.size(); ++i)
|
||||
{
|
||||
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
|
||||
if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
|
||||
VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
|
||||
}
|
||||
VERIFY_IS_APPROX(m, refMat);
|
||||
|
||||
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
||||
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
||||
|
||||
VERIFY_IS_APPROX(m, refMat);
|
||||
|
||||
// random setter
|
||||
// {
|
||||
// m.setZero();
|
||||
// VERIFY_IS_NOT_APPROX(m, refMat);
|
||||
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
|
||||
// std::vector<Vector2i> remaining = nonzeroCoords;
|
||||
// while(!remaining.empty())
|
||||
// {
|
||||
// int i = ei_random<int>(0,remaining.size()-1);
|
||||
// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
|
||||
// remaining[i] = remaining.back();
|
||||
// remaining.pop_back();
|
||||
// }
|
||||
// }
|
||||
// VERIFY_IS_APPROX(m, refMat);
|
||||
|
||||
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
|
||||
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
|
||||
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
|
||||
#endif
|
||||
#ifdef _DENSE_HASH_MAP_H_
|
||||
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
||||
#endif
|
||||
#ifdef _SPARSE_HASH_MAP_H_
|
||||
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
|
||||
#endif
|
||||
|
||||
|
||||
// test RandomSetter
|
||||
/*{
|
||||
SparseMatrixType m1(rows,cols), m2(rows,cols);
|
||||
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
|
||||
initSparse<Scalar>(density, refM1, m1);
|
||||
{
|
||||
Eigen::RandomSetter<SparseMatrixType > setter(m2);
|
||||
for (int j=0; j<m1.outerSize(); ++j)
|
||||
for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
|
||||
setter(i.index(), j) = i.value();
|
||||
}
|
||||
VERIFY_IS_APPROX(m1, m2);
|
||||
}*/
|
||||
|
||||
|
||||
}
|
||||
|
||||
void test_sparse_extra()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(8, 8)) );
|
||||
CALL_SUBTEST_2( sparse_extra(SparseMatrix<std::complex<double> >(16, 16)) );
|
||||
CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(33, 33)) );
|
||||
|
||||
CALL_SUBTEST_3( sparse_extra(DynamicSparseMatrix<double>(8, 8)) );
|
||||
}
|
||||
}
|
68
unsupported/test/sparse_ldlt.cpp
Normal file
68
unsupported/test/sparse_ldlt.cpp
Normal file
@ -0,0 +1,68 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
#include <Eigen/TaucsSupport>
|
||||
#endif
|
||||
|
||||
template<typename Scalar> void sparse_ldlt(int rows, int cols)
|
||||
{
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
||||
for(int i=0; i<rows; ++i)
|
||||
m2.coeffRef(i,i) = refMat2(i,i) = ei_abs(ei_real(refMat2(i,i)));
|
||||
|
||||
refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
|
||||
typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
|
||||
x = b;
|
||||
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
||||
if (ldlt.succeeded())
|
||||
ldlt.solveInPlace(x);
|
||||
else
|
||||
std::cerr << "warning LDLT failed\n";
|
||||
|
||||
VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
||||
}
|
||||
|
||||
void test_sparse_ldlt()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(sparse_ldlt<double>(8, 8) );
|
||||
int s = ei_random<int>(1,300);
|
||||
CALL_SUBTEST_2(sparse_ldlt<std::complex<double> >(s,s) );
|
||||
CALL_SUBTEST_1(sparse_ldlt<double>(s,s) );
|
||||
}
|
||||
}
|
91
unsupported/test/sparse_llt.cpp
Normal file
91
unsupported/test/sparse_llt.cpp
Normal file
@ -0,0 +1,91 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
#include <Eigen/CholmodSupport>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
#include <Eigen/TaucsSupport>
|
||||
#endif
|
||||
|
||||
template<typename Scalar> void sparse_llt(int rows, int cols)
|
||||
{
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
|
||||
for(int i=0; i<rows; ++i)
|
||||
m2.coeffRef(i,i) = refMat2(i,i) = ei_abs(ei_real(refMat2(i,i)));
|
||||
|
||||
refX = refMat2.template selfadjointView<Lower>().llt().solve(b);
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
x = b;
|
||||
SparseLLT<SparseMatrix<Scalar> > (m2).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
||||
}
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
x = b;
|
||||
SparseLLT<SparseMatrix<Scalar> ,Cholmod>(m2).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_TAUCS_SUPPORT
|
||||
// TODO fix TAUCS with complexes
|
||||
if (!NumTraits<Scalar>::IsComplex)
|
||||
{
|
||||
x = b;
|
||||
// SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
||||
// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
||||
|
||||
x = b;
|
||||
SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
||||
x = b;
|
||||
SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_sparse_llt()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(sparse_llt<double>(8, 8) );
|
||||
int s = ei_random<int>(1,300);
|
||||
CALL_SUBTEST_2(sparse_llt<std::complex<double> >(s,s) );
|
||||
CALL_SUBTEST_1(sparse_llt<double>(s,s) );
|
||||
}
|
||||
}
|
115
unsupported/test/sparse_lu.cpp
Normal file
115
unsupported/test/sparse_lu.cpp
Normal file
@ -0,0 +1,115 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
#include <Eigen/UmfPackSupport>
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
#include <Eigen/SuperLUSupport>
|
||||
#endif
|
||||
|
||||
template<typename Scalar> void sparse_lu(int rows, int cols)
|
||||
{
|
||||
double density = std::max(8./(rows*cols), 0.01);
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
DenseVector vec1 = DenseVector::Random(rows);
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
|
||||
static int count = 0;
|
||||
SparseMatrix<Scalar> m2(rows, cols);
|
||||
DenseMatrix refMat2(rows, cols);
|
||||
|
||||
DenseVector b = DenseVector::Random(cols);
|
||||
DenseVector refX(cols), x(cols);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
FullPivLU<DenseMatrix> refLu(refMat2);
|
||||
refX = refLu.solve(b);
|
||||
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
|
||||
Scalar refDet = refLu.determinant();
|
||||
#endif
|
||||
x.setZero();
|
||||
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
||||
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
{
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
||||
if (slu.succeeded())
|
||||
{
|
||||
if (slu.solve(b,&x)) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
||||
}
|
||||
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
||||
if (slu.solve(b, &x, SvTranspose)) {
|
||||
VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
if (slu.solve(b, &x, SvAdjoint)) {
|
||||
VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
if (count==0) {
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
{
|
||||
// check solve
|
||||
x.setZero();
|
||||
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
||||
if (slu.succeeded()) {
|
||||
if (slu.solve(b,&x)) {
|
||||
if (count==0) {
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
||||
}
|
||||
}
|
||||
VERIFY_IS_APPROX(refDet,slu.determinant());
|
||||
// TODO check the extracted data
|
||||
//std::cerr << slu.matrixL() << "\n";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
count++;
|
||||
}
|
||||
|
||||
void test_sparse_lu()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(sparse_lu<double>(8, 8) );
|
||||
int s = ei_random<int>(1,300);
|
||||
CALL_SUBTEST_2(sparse_lu<std::complex<double> >(s,s) );
|
||||
CALL_SUBTEST_1(sparse_lu<double>(s,s) );
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user