fix some documentation issues

This commit is contained in:
Gael Guennebaud 2008-10-17 11:20:46 +00:00
parent e747b338ee
commit 727dfa1c43
7 changed files with 27 additions and 65 deletions

View File

@ -51,9 +51,10 @@ template<typename MatrixType> class Cholesky
compute(matrix);
}
/** \deprecated */
inline Part<MatrixType, Lower> matrixL(void) const { return m_matrix; }
/** \returns true if the matrix is positive definite */
/** \deprecated */
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
template<typename Derived>
@ -76,8 +77,7 @@ template<typename MatrixType> class Cholesky
bool m_isPositiveDefinite;
};
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*/
/** \deprecated */
template<typename MatrixType>
void Cholesky<MatrixType>::compute(const MatrixType& a)
{
@ -128,20 +128,7 @@ typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b)
return x;
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
* \sa MatrixBase::cholesky(), Cholesky::solveInPlace()
*/
/** \deprecated */
template<typename MatrixType>
template<typename RhsDerived, typename ResDerived>
bool Cholesky<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const
@ -151,15 +138,7 @@ bool Cholesky<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<Res
return solveInPlace((*result) = b);
}
/** This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa Cholesky::solve(), MatrixBase::cholesky()
*/
/** \deprecated */
template<typename MatrixType>
template<typename Derived>
bool Cholesky<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const

View File

@ -77,8 +77,7 @@ template<typename MatrixType> class CholeskyWithoutSquareRoot
bool m_isPositiveDefinite;
};
/** Compute / recompute the Cholesky decomposition A = L D L^* = U^* D U of \a matrix
*/
/** \deprecated */
template<typename MatrixType>
void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
{
@ -145,20 +144,7 @@ typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const Matrix
);
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include CholeskyCholeskyWithoutSquareRoot_solve.cpp
* Output: \verbinclude CholeskyCholeskyWithoutSquareRoot_solve.out
*
* \sa CholeskyWithoutSquareRoot::solveInPlace(), MatrixBase::choleskyNoSqrt()
*/
/** \deprecated */
template<typename MatrixType>
template<typename RhsDerived, typename ResDerived>
bool CholeskyWithoutSquareRoot<MatrixType>
@ -170,15 +156,7 @@ bool CholeskyWithoutSquareRoot<MatrixType>
return solveInPlace(*result);
}
/** This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa CholeskyWithoutSquareRoot::solve(), MatrixBase::choleskyNoSqrt()
*/
/** \deprecated */
template<typename MatrixType>
template<typename Derived>
bool CholeskyWithoutSquareRoot<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
@ -193,7 +171,7 @@ bool CholeskyWithoutSquareRoot<MatrixType>::solveInPlace(MatrixBase<Derived> &bA
return true;
}
/** \deprecated \cholesky_module
/** \cholesky_module
* \deprecated has been renamed ldlt()
*/
template<typename Derived>

View File

@ -142,16 +142,12 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
* The result is stored in \a result
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include LLTLDLT_solve.cpp
* Output: \verbinclude LLTLDLT_solve.out
*
* \sa LDLT::solveInPlace(), MatrixBase::ldlt()
*/

View File

@ -66,6 +66,7 @@ template<typename MatrixType> class LLT
compute(matrix);
}
/** \returns the lower triangular matrix L */
inline Part<MatrixType, Lower> matrixL(void) const { return m_matrix; }
/** \returns true if the matrix is positive definite */
@ -129,13 +130,12 @@ void LLT<MatrixType>::compute(const MatrixType& a)
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a bAndx
* The result is stored in \a result
*
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
* \param bAndX stores both the matrix \f$ b \f$ and the result \f$ x \f$
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out

View File

@ -24,6 +24,7 @@ namespace Eigen {
- \ref TutorialCoreTriangularMatrix
- \ref TutorialLazyEvaluation
\n
<hr>
<a href="#" class="top">top</a>\section TutorialCoreGettingStarted Getting started
@ -256,7 +257,6 @@ scalar product</td><td>\code
mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1;
mat3 = mat1 / s1; mat3 /= s1;\endcode
</td></tr>
<tr><td>
</table>
In Eigen, only traditional mathematical operators can be used right away.
@ -424,11 +424,13 @@ Read-write access to sub-matrices:</td><td></td><td></td></tr>
<tr><td>\code
mat4x4.minor(i,j) = mat3x3;
mat3x3 = mat4x4.minor(i,j);\endcode
</td><td>
</td><td></td><td>
\link MatrixBase::minor() minor \endlink (read-write)</td>
</tr>
</table>
<a href="#" class="top">top</a>\section TutorialCoreDiagonalMatrices Diagonal matrices
<table class="tutorial_code">

View File

@ -2,7 +2,7 @@
namespace Eigen {
/** \page TutorialAdvancedLinearAlgebra Tutorial 3/3 - Advanced linear algebra
\in group Tutorial
\ingroup Tutorial
<div class="eimainmenu">\ref index "Overview"
| \ref TutorialCore "Core features"

View File

@ -479,6 +479,7 @@ th {
TABLE.noborder {
border-collapse: separate;
border-bottom-style : none;
border-left-style : none;
border-right-style : none;
@ -499,16 +500,22 @@ TABLE.noborder TD {
table.tutorial_code {
border-collapse: collapse;
empty-cells : show;
border-width: 1px;
border-style: dotted;
border-color: #888888;
empty-cells : hide;
margin: 4pt 0 0 0;
padding: 0 0 0 0;
}
table.tutorial_code tr {
border-style: none dashed none dashed;
border-style: dashed;
border-width: 1px;
border-color: #888888;
}
table.tutorial_code td {
border-style: dashed none dashed none;
border-style: none dotted none dotted;
border-width: 0 1px 0 1px;
border-color: transparent;
empty-cells : show;
margin: 0 0 0 0;
padding: 2pt 5pt 2pt 5pt;