apply Ricard patch for Reverse with minor modifications

This commit is contained in:
Gael Guennebaud 2009-02-06 09:01:50 +00:00
parent dc97079905
commit 6fbca94803
11 changed files with 469 additions and 4 deletions

View File

@ -31,6 +31,7 @@ namespace Eigen {
#include "src/Array/PartialRedux.h"
#include "src/Array/Random.h"
#include "src/Array/Norms.h"
#include "src/Array/Reverse.h"
} // namespace Eigen

View File

@ -12,7 +12,7 @@
#if _M_IX86_FP >= 2
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#endif
#endif
#endif

View File

@ -257,7 +257,21 @@ template<typename ExpressionType, int Direction> class PartialRedux
* \sa MatrixBase::count() */
const PartialReduxExpr<ExpressionType, ei_member_count<int>, Direction> count() const
{ return _expression(); }
/** \returns a matrix expression
* where each column (or row) are reversed.
*
* Example: \include PartialRedux_reverse.cpp
* Output: \verbinclude PartialRedux_reverse.out
*
* \sa MatrixBase::reverse() */
const Reverse<ExpressionType, Direction> reverse() const
{
return Reverse<ExpressionType, Direction>( _expression() );
}
/** \returns a 3x3 matrix expression of the cross product
* of each column or row of the referenced expression with the \a other vector.
*

239
Eigen/src/Array/Reverse.h Normal file
View File

@ -0,0 +1,239 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_REVERSE_H
#define EIGEN_REVERSE_H
#include <iostream>
using namespace std;
/** \array_module \ingroup Array
*
* \class Reverse
*
* \brief Expression of the reverse of a vector or matrix
*
* \param MatrixType the type of the object of which we are taking the reverse
*
* This class represents an expression of the reverse of a vector.
* It is the return type of MatrixBase::reverse() and PartialRedux::reverse()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::reverse(), PartialRedux::reverse()
*/
template<typename MatrixType, int Direction>
struct ei_traits<Reverse<MatrixType, Direction> >
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
// TODO: check how to correctly set the new flags
Flags = ((int(_MatrixTypeNested::Flags) & HereditaryBits)
& ~(LowerTriangularBit | UpperTriangularBit))
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
// TODO: should add two add costs (due to the -1) or only one, and add the cost of calling .rows() and .cols()
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
template<typename MatrixType, int Direction> class Reverse
: public MatrixBase<Reverse<MatrixType, Direction> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Reverse)
inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
inline Scalar& coeffRef(int row, int col)
{
return m_matrix.const_cast_derived().coeffRef(((Direction == Vertical) || (Direction == BothDirections)) ? m_matrix.rows() - row - 1 : row,
((Direction == Horizontal) || (Direction == BothDirections)) ? m_matrix.cols() - col - 1 : col);
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(((Direction == Vertical) || (Direction == BothDirections)) ? m_matrix.rows() - row - 1 : row,
((Direction == Horizontal) || (Direction == BothDirections)) ? m_matrix.cols() - col - 1 : col);
}
/* could be removed */
/*
inline const Scalar coeff(int index) const
{
switch ( Direction )
{
case Vertical:
return m_matrix.coeff( index + m_matrix.rows() - 2 * (index % m_matrix.rows()) - 1 );
break;
case Horizontal:
return m_matrix.coeff( (index % m_matrix.rows()) + (m_matrix.cols() - 1 - index/m_matrix.rows()) * m_matrix.rows() );
break;
case BothDirections:
return m_matrix.coeff((m_matrix.rows() * m_matrix.cols()) - index - 1);
break;
}
}
inline Scalar& coeffRef(int index)
{
switch ( Direction )
{
case Vertical:
return m_matrix.const_cast_derived().coeffRef( index + m_matrix.rows() - 2 * (index % m_matrix.rows()) - 1 );
break;
case Horizontal:
return m_matrix.const_cast_derived().coeffRef( (index % m_matrix.rows()) + (m_matrix.cols() - 1 - index/m_matrix.rows()) * m_matrix.rows() );
break;
case BothDirections:
return m_matrix.const_cast_derived().coeffRef( (m_matrix.rows() * m_matrix.cols()) - index - 1 );
break;
}
}
*/
/* the following is not ready yet */
/*
// TODO: We must reverse the packet reading and writing, which is currently not done here, I think
template<int LoadMode>
inline const PacketScalar packet(int row, int col) const
{
return m_matrix.template packet<LoadMode>(((Direction == Vertical) || (Direction == BothDirections)) ? m_matrix.rows() - row - 1 : row,
((Direction == Horizontal) || (Direction == BothDirections)) ? m_matrix.cols() - col - 1 : col);
}
template<int LoadMode>
inline void writePacket(int row, int col, const PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<LoadMode>(((Direction == Vertical) || (Direction == BothDirections)) ? m_matrix.rows() - row - 1 : row,
((Direction == Horizontal) || (Direction == BothDirections)) ? m_matrix.cols() - col - 1 : col,
x);
}
template<int LoadMode>
inline const PacketScalar packet(int index) const
{
switch ( Direction )
{
case Vertical:
return m_matrix.template packet<LoadMode>( index + m_matrix.rows() - 2 * (index % m_matrix.rows()) - 1 );
break;
case Horizontal:
return m_matrix.template packet<LoadMode>( (index % m_matrix.rows()) + (m_matrix.cols() - 1 - index/m_matrix.rows()) * m_matrix.rows() );
break;
case BothDirections:
return m_matrix.template packet<LoadMode>( (m_matrix.rows() * m_matrix.cols()) - index - 1 );
break;
}
}
*/
/* could be removed */
/*
template<int LoadMode>
inline void writePacket(int index, const PacketScalar& x)
{
switch ( Direction )
{
case Vertical:
return m_matrix.const_cast_derived().template packet<LoadMode>( index + m_matrix.rows() - 2 * (index % m_matrix.rows()) - 1, x );
break;
case Horizontal:
return m_matrix.const_cast_derived().template packet<LoadMode>( (index % m_matrix.rows()) + (m_matrix.cols() - 1 - index/m_matrix.rows()) * m_matrix.rows(), x );
break;
case BothDirections:
return m_matrix.const_cast_derived().template packet<LoadMode>( (m_matrix.rows() * m_matrix.cols()) - index - 1, x );
break;
}
}
*/
protected:
const typename MatrixType::Nested m_matrix;
};
/** \returns an expression of the reverse of *this.
*
* Example: \include MatrixBase_reverse.cpp
* Output: \verbinclude MatrixBase_reverse.out
*
*/
template<typename Derived>
inline Reverse<Derived, BothDirections>
MatrixBase<Derived>::reverse()
{
return derived();
}
/** This is the const version of reverse(). */
template<typename Derived>
inline const Reverse<Derived, BothDirections>
MatrixBase<Derived>::reverse() const
{
return derived();
}
/** This is the "in place" version of reverse: it reverses \c *this.
*
* In most cases it is probably better to simply use the reversed expression
* of a matrix. However, when reversing the matrix data itself is really needed,
* then this "in-place" version is probably the right choice because it provides
* the following additional features:
* - less error prone: doing the same operation with .reverse() requires special care:
* \code m = m.reverse().eval(); \endcode
* - no temporary object is created (currently there is one created but could be avoided using swap)
* - it allows future optimizations (cache friendliness, etc.)
*
* \sa reverse() */
template<typename Derived>
inline void MatrixBase<Derived>::reverseInPlace()
{
derived() = derived().reverse().eval();
}
#endif // EIGEN_REVERSE_H

View File

@ -359,7 +359,10 @@ template<typename Derived> class MatrixBase
const Eigen::Transpose<Derived> transpose() const;
void transposeInPlace();
const AdjointReturnType adjoint() const;
Eigen::Reverse<Derived, BothDirections> reverse();
const Eigen::Reverse<Derived, BothDirections> reverse() const;
void reverseInPlace();
RowXpr row(int i);
const RowXpr row(int i) const;

View File

@ -200,7 +200,7 @@ enum { Aligned, Unaligned };
enum { ForceAligned, AsRequested };
enum { ConditionalJumpCost = 5 };
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal };
enum DirectionType { Vertical, Horizontal, BothDirections };
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct, SparseTimeSparseProduct, SparseTimeDenseProduct, DenseTimeSparseProduct };
enum {

View File

@ -40,6 +40,7 @@ template<typename MatrixType, int BlockRows=Dynamic, int BlockCols=Dynamic, int
int _DirectAccessStatus = ei_traits<MatrixType>::Flags&DirectAccessBit ? DirectAccessBit
: ei_traits<MatrixType>::Flags&SparseBit> class Block;
template<typename MatrixType> class Transpose;
template<typename MatrixType, int Direction = BothDirections> class Reverse;
template<typename MatrixType> class Conjugate;
template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;

View File

@ -0,0 +1,8 @@
MatrixXi m = MatrixXi::Random(3,4);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the reverse of m:" << endl << m.reverse() << endl;
cout << "Here is the coefficient (1,0) in the reverse of m:" << endl
<< m.reverse()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 4." << endl;
m.reverse()(1,0) = 4;
cout << "Now the matrix m is:" << endl << m << endl;

View File

@ -0,0 +1,10 @@
MatrixXi m = MatrixXi::Random(3,4);
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the rowwise reverse of m:" << endl << m.rowwise().reverse() << endl;
cout << "Here is the colwise reverse of m:" << endl << m.colwise().reverse() << endl;
cout << "Here is the coefficient (1,0) in the rowise reverse of m:" << endl
<< m.rowwise().reverse()(1,0) << endl;
cout << "Let us overwrite this coefficient with the value 4." << endl;
//m.colwise().reverse()(1,0) = 4;
cout << "Now the matrix m is:" << endl << m << endl;

View File

@ -139,6 +139,7 @@ endif(QT4_FOUND)
ei_add_test(sparse_vector)
ei_add_test(sparse_basic)
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
ei_add_test(reverse)
# print a summary of the different options
message("************************************************************")

188
test/reverse.cpp Normal file
View File

@ -0,0 +1,188 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <iostream>
using namespace std;
template<typename MatrixType> void reverse(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols);
VectorType v1 = VectorType::Random(rows);
MatrixType m1_r = m1.reverse();
// Verify that MatrixBase::reverse() works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType> m1_rd(m1);
// Verify that a Reverse default (in both directions) of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType, BothDirections> m1_rb(m1);
// Verify that a Reverse in both directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
}
}
Reverse<MatrixType, Vertical> m1_rv(m1);
// Verify that a Reverse in the vertical directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
}
}
Reverse<MatrixType, Horizontal> m1_rh(m1);
// Verify that a Reverse in the horizontal directions of an expression works
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
}
}
VectorType v1_r = v1.reverse();
// Verify that a VectorType::reverse() of an expression works
for ( int i = 0; i < rows; i++ ) {
VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
}
MatrixType m1_cr = m1.colwise().reverse();
// Verify that PartialRedux::reverse() works (for colwise())
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
}
}
MatrixType m1_rr = m1.rowwise().reverse();
// Verify that PartialRedux::reverse() works (for rowwise())
for ( int i = 0; i < rows; i++ ) {
for ( int j = 0; j < cols; j++ ) {
VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
}
}
int ind = ei_random<int>(0, (rows*cols) - 1);
/* Reverse::coeff(int) is for vector only */
/*
MatrixType m1_reversed(m1.reverse());
VERIFY_IS_APPROX( m1_reversed.reverse().coeff( ind ), m1.coeff( ind ) );
MatrixType m1c_reversed = m1.colwise().reverse();
VERIFY_IS_APPROX( m1c_reversed.colwise().reverse().coeff( ind ), m1.coeff( ind ) );
MatrixType m1r_reversed = m1.rowwise().reverse();
VERIFY_IS_APPROX( m1r_reversed.rowwise().reverse().coeff( ind ), m1.coeff( ind ) );
*/
/*
cout << "m1:" << endl << m1 << endl;
cout << "m1c_reversed:" << endl << m1c_reversed << endl;
cout << "----------------" << endl;
for ( int i=0; i< rows*cols; i++){
cout << m1c_reversed.coeff(i) << endl;
}
cout << "----------------" << endl;
for ( int i=0; i< rows*cols; i++){
cout << m1c_reversed.colwise().reverse().coeff(i) << endl;
}
cout << "================" << endl;
cout << "m1.coeff( ind ): " << m1.coeff( ind ) << endl;
cout << "m1c_reversed.colwise().reverse().coeff( ind ): " << m1c_reversed.colwise().reverse().coeff( ind ) << endl;
*/
//MatrixType m1r_reversed = m1.rowwise().reverse();
//VERIFY_IS_APPROX( m1r_reversed.rowwise().reverse().coeff( ind ), m1.coeff( ind ) );
/*
cout << "m1" << endl << m1 << endl;
cout << "m1 using coeff(int index)" << endl;
for ( int i = 0; i < rows*cols; i++) {
cout << m1.coeff(i) << " ";
}
cout << endl;
cout << "m1.transpose()" << endl << m1.transpose() << endl;
cout << "m1.transpose() using coeff(int index)" << endl;
for ( int i = 0; i < rows*cols; i++) {
cout << m1.transpose().coeff(i) << " ";
}
cout << endl;
*/
/*
Scalar x = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
m1.reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
m1.colwise().reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
m1.rowwise().reverse()(r, c) = x;
VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
*/
}
void test_reverse()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( reverse(Matrix<float, 1, 1>()) );
CALL_SUBTEST( reverse(Matrix4d()) );
CALL_SUBTEST( reverse(MatrixXcf(3, 3)) );
CALL_SUBTEST( reverse(MatrixXi(8, 12)) );
CALL_SUBTEST( reverse(MatrixXcd(20, 20)) );
CALL_SUBTEST( reverse(Matrix<float, 100, 100>()) );
CALL_SUBTEST( reverse(Matrix<long double,Dynamic,Dynamic>(10,10)) );
}
}