Made AutoDiffJacobian more intuitive to use and updated for C++11

Changes:
* Removed unnecessary types from the Functor by inferring from its types
* Removed inputs() function reference, replaced with .rows()
* Updated the forward constructor to use variadic templates
* Added optional parameters to the Fuctor for passing parameters,
  control signals, etc
* Has been tested with fixed size and dynamic matricies

Ammendment by chtz: overload operator() for compatibility with not fully conforming compilers
This commit is contained in:
Emil Fresk 2016-09-16 14:03:55 +02:00
parent 4adeababf9
commit 6edd2e2851
2 changed files with 126 additions and 15 deletions

View File

@ -20,37 +20,60 @@ public:
AutoDiffJacobian(const Functor& f) : Functor(f) {} AutoDiffJacobian(const Functor& f) : Functor(f) {}
// forward constructors // forward constructors
#if EIGEN_HAS_VARIADIC_TEMPLATES
template<typename... T>
AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
#else
template<typename T0> template<typename T0>
AutoDiffJacobian(const T0& a0) : Functor(a0) {} AutoDiffJacobian(const T0& a0) : Functor(a0) {}
template<typename T0, typename T1> template<typename T0, typename T1>
AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
template<typename T0, typename T1, typename T2> template<typename T0, typename T1, typename T2>
AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
#endif
enum {
InputsAtCompileTime = Functor::InputsAtCompileTime,
ValuesAtCompileTime = Functor::ValuesAtCompileTime
};
typedef typename Functor::InputType InputType; typedef typename Functor::InputType InputType;
typedef typename Functor::ValueType ValueType; typedef typename Functor::ValueType ValueType;
typedef typename Functor::JacobianType JacobianType; typedef typename ValueType::Scalar Scalar;
typedef typename JacobianType::Scalar Scalar;
enum {
InputsAtCompileTime = InputType::RowsAtCompileTime,
ValuesAtCompileTime = ValueType::RowsAtCompileTime
};
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
typedef typename JacobianType::Index Index; typedef typename JacobianType::Index Index;
typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType; typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
typedef AutoDiffScalar<DerivativeType> ActiveScalar; typedef AutoDiffScalar<DerivativeType> ActiveScalar;
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
#if EIGEN_HAS_VARIADIC_TEMPLATES
// Some compilers don't accept variadic parameters after a default parameter,
// i.e., we can't just write _jac=0 but we need to overload operator():
EIGEN_STRONG_INLINE
void operator() (const InputType& x, ValueType* v) const
{
this->operator()(x, v, 0);
}
template<typename... ParamsType>
void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
const ParamsType&... Params) const
#else
void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
#endif
{ {
eigen_assert(v!=0); eigen_assert(v!=0);
if (!_jac) if (!_jac)
{ {
#if EIGEN_HAS_VARIADIC_TEMPLATES
Functor::operator()(x, v, Params...);
#else
Functor::operator()(x, v); Functor::operator()(x, v);
#endif
return; return;
} }
@ -61,12 +84,16 @@ public:
if(InputsAtCompileTime==Dynamic) if(InputsAtCompileTime==Dynamic)
for (Index j=0; j<jac.rows(); j++) for (Index j=0; j<jac.rows(); j++)
av[j].derivatives().resize(this->inputs()); av[j].derivatives().resize(x.rows());
for (Index i=0; i<jac.cols(); i++) for (Index i=0; i<jac.cols(); i++)
ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i); ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
#if EIGEN_HAS_VARIADIC_TEMPLATES
Functor::operator()(ax, &av, Params...);
#else
Functor::operator()(ax, &av); Functor::operator()(ax, &av);
#endif
for (Index i=0; i<jac.rows(); i++) for (Index i=0; i<jac.rows(); i++)
{ {
@ -74,8 +101,6 @@ public:
jac.row(i) = av[i].derivatives(); jac.row(i) = av[i].derivatives();
} }
} }
protected:
}; };
} }

View File

@ -105,6 +105,89 @@ struct TestFunc1
} }
}; };
#if EIGEN_HAS_VARIADIC_TEMPLATES
/* Test functor for the C++11 features. */
template <typename Scalar>
struct integratorFunctor
{
typedef Matrix<Scalar, 2, 1> InputType;
typedef Matrix<Scalar, 2, 1> ValueType;
/*
* Implementation starts here.
*/
integratorFunctor(const Scalar gain) : _gain(gain) {}
integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {}
const Scalar _gain;
template <typename T1, typename T2>
void operator() (const T1 &input, T2 *output, const Scalar dt) const
{
T2 &o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
}
/* Only needed for the test */
template <typename T1, typename T2, typename T3>
void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const
{
T2 &o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
if (jacobian)
{
T3 &j = *jacobian;
j(0, 0) = 1;
j(0, 1) = dt * _gain;
j(1, 0) = 0;
j(1, 1) = _gain;
}
}
};
template<typename Func> void forward_jacobian_cpp11(const Func& f)
{
typedef typename Func::ValueType::Scalar Scalar;
typedef typename Func::ValueType ValueType;
typedef typename Func::InputType InputType;
typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType;
InputType x = InputType::Random(InputType::RowsAtCompileTime);
ValueType y, yref;
JacobianType j, jref;
const Scalar dt = internal::random<double>();
jref.setZero();
yref.setZero();
f(x, &yref, &jref, dt);
//std::cerr << "y, yref, jref: " << "\n";
//std::cerr << y.transpose() << "\n\n";
//std::cerr << yref << "\n\n";
//std::cerr << jref << "\n\n";
AutoDiffJacobian<Func> autoj(f);
autoj(x, &y, &j, dt);
//std::cerr << "y j (via autodiff): " << "\n";
//std::cerr << y.transpose() << "\n\n";
//std::cerr << j << "\n\n";
VERIFY_IS_APPROX(y, yref);
VERIFY_IS_APPROX(j, jref);
}
#endif
template<typename Func> void forward_jacobian(const Func& f) template<typename Func> void forward_jacobian(const Func& f)
{ {
typename Func::InputType x = Func::InputType::Random(f.inputs()); typename Func::InputType x = Func::InputType::Random(f.inputs());
@ -128,7 +211,6 @@ template<typename Func> void forward_jacobian(const Func& f)
VERIFY_IS_APPROX(j, jref); VERIFY_IS_APPROX(j, jref);
} }
// TODO also check actual derivatives! // TODO also check actual derivatives!
template <int> template <int>
void test_autodiff_scalar() void test_autodiff_scalar()
@ -141,6 +223,7 @@ void test_autodiff_scalar()
VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y())); VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
} }
// TODO also check actual derivatives! // TODO also check actual derivatives!
template <int> template <int>
void test_autodiff_vector() void test_autodiff_vector()
@ -164,6 +247,9 @@ void test_autodiff_jacobian()
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
#if EIGEN_HAS_VARIADIC_TEMPLATES
CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) ));
#endif
} }