mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
* JacobiSVD:
- support complex numbers - big rewrite of the 2x2 kernel, much more robust * Jacobi: - fix weirdness in initial design, e.g. applyJacobiOnTheRight actually did the inverse transformation - fully support complex numbers - fix logic to decide whether to vectorize - remove several clumsy methods fix for complex numbers
This commit is contained in:
parent
29c6b2452d
commit
6e4e94ff32
@ -23,7 +23,7 @@ namespace Eigen {
|
||||
*/
|
||||
|
||||
#include "src/SVD/SVD.h"
|
||||
#include "src/SVD/JacobiSquareSVD.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
|
@ -803,11 +803,11 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
///////// Jacobi module /////////
|
||||
|
||||
void applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s);
|
||||
void applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s);
|
||||
template<typename JacobiScalar>
|
||||
void applyJacobiOnTheLeft(int p, int q, JacobiScalar c, JacobiScalar s);
|
||||
template<typename JacobiScalar>
|
||||
void applyJacobiOnTheRight(int p, int q, JacobiScalar c, JacobiScalar s);
|
||||
bool makeJacobi(int p, int q, Scalar *c, Scalar *s) const;
|
||||
bool makeJacobiForAtA(int p, int q, Scalar *c, Scalar *s) const;
|
||||
bool makeJacobiForAAt(int p, int q, Scalar *c, Scalar *s) const;
|
||||
|
||||
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
||||
#include EIGEN_MATRIXBASE_PLUGIN
|
||||
|
@ -120,6 +120,7 @@ template<typename MatrixType> class HouseholderQR;
|
||||
template<typename MatrixType> class ColPivotingHouseholderQR;
|
||||
template<typename MatrixType> class FullPivotingHouseholderQR;
|
||||
template<typename MatrixType> class SVD;
|
||||
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
|
||||
template<typename MatrixType, int UpLo = LowerTriangular> class LLT;
|
||||
template<typename MatrixType> class LDLT;
|
||||
|
||||
|
@ -33,19 +33,20 @@
|
||||
*
|
||||
* \sa MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
|
||||
*/
|
||||
template<typename VectorX, typename VectorY>
|
||||
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, typename VectorX::Scalar c, typename VectorY::Scalar s);
|
||||
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
||||
void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s);
|
||||
|
||||
/** Applies a rotation in the plane defined by \a c, \a s to the rows \a p and \a q of \c *this.
|
||||
* More precisely, it computes B = J' * B, with J = [c s ; -s' c] and B = [ *this.row(p) ; *this.row(q) ]
|
||||
* \sa MatrixBase::applyJacobiOnTheRight(), ei_apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
|
||||
template<typename JacobiScalar>
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, JacobiScalar c, JacobiScalar s)
|
||||
{
|
||||
RowXpr x(row(p));
|
||||
RowXpr y(row(q));
|
||||
ei_apply_rotation_in_the_plane(x, y, ei_conj(c), ei_conj(s));
|
||||
ei_apply_rotation_in_the_plane(x, y, c, s);
|
||||
}
|
||||
|
||||
/** Applies a rotation in the plane defined by \a c, \a s to the columns \a p and \a q of \c *this.
|
||||
@ -53,23 +54,25 @@ inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Sc
|
||||
* \sa MatrixBase::applyJacobiOnTheLeft(), ei_apply_rotation_in_the_plane()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
|
||||
template<typename JacobiScalar>
|
||||
inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, JacobiScalar c, JacobiScalar s)
|
||||
{
|
||||
ColXpr x(col(p));
|
||||
ColXpr y(col(q));
|
||||
ei_apply_rotation_in_the_plane(x, y, c, s);
|
||||
ei_apply_rotation_in_the_plane(x, y, c, -ei_conj(s));
|
||||
}
|
||||
|
||||
/** Computes the cosine-sine pair (\a c, \a s) such that its associated
|
||||
* rotation \f$ J = ( \begin{array}{cc} c & s \\ -s' c \end{array} )\f$
|
||||
* rotation \f$ J = ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} )\f$
|
||||
* applied to both the right and left of the 2x2 matrix
|
||||
* \f$ B = ( \begin{array}{cc} x & y \\ * & z \end{array} )\f$ yields
|
||||
* a diagonal matrix A: \f$ A = J' B J \f$
|
||||
* a diagonal matrix A: \f$ A = J^* B J \f$
|
||||
*/
|
||||
template<typename Scalar>
|
||||
bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
|
||||
bool ei_makeJacobi(typename NumTraits<Scalar>::Real x, Scalar y, typename NumTraits<Scalar>::Real z, Scalar *c, Scalar *s)
|
||||
{
|
||||
if(y == 0)
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
if(y == Scalar(0))
|
||||
{
|
||||
*c = Scalar(1);
|
||||
*s = Scalar(0);
|
||||
@ -77,15 +80,21 @@ bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar tau = (z - x) / (2 * y);
|
||||
Scalar w = ei_sqrt(1 + ei_abs2(tau));
|
||||
Scalar t;
|
||||
RealScalar tau = (x-z)/(RealScalar(2)*ei_abs(y));
|
||||
RealScalar w = ei_sqrt(ei_abs2(tau) + 1);
|
||||
RealScalar t;
|
||||
if(tau>0)
|
||||
t = Scalar(1) / (tau + w);
|
||||
{
|
||||
t = RealScalar(1) / (tau + w);
|
||||
}
|
||||
else
|
||||
t = Scalar(1) / (tau - w);
|
||||
*c = Scalar(1) / ei_sqrt(1 + ei_abs2(t));
|
||||
*s = *c * t;
|
||||
{
|
||||
t = RealScalar(1) / (tau - w);
|
||||
}
|
||||
RealScalar sign_t = t > 0 ? 1 : -1;
|
||||
RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1);
|
||||
*s = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n;
|
||||
*c = n;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -93,41 +102,11 @@ bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, Scalar *c, Scalar *s) const
|
||||
{
|
||||
return ei_makeJacobi(coeff(p,p), coeff(p,q), coeff(q,q), c, s);
|
||||
return ei_makeJacobi(ei_real(coeff(p,p)), coeff(p,q), ei_real(coeff(q,q)), c, s);
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::makeJacobiForAtA(int p, int q, Scalar *c, Scalar *s) const
|
||||
{
|
||||
return ei_makeJacobi(ei_abs2(coeff(p,p)) + ei_abs2(coeff(q,p)),
|
||||
ei_conj(coeff(p,p))*coeff(p,q) + ei_conj(coeff(q,p))*coeff(q,q),
|
||||
ei_abs2(coeff(p,q)) + ei_abs2(coeff(q,q)),
|
||||
c,s);
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline bool MatrixBase<Derived>::makeJacobiForAAt(int p, int q, Scalar *c, Scalar *s) const
|
||||
{
|
||||
return ei_makeJacobi(ei_abs2(coeff(p,p)) + ei_abs2(coeff(p,q)),
|
||||
ei_conj(coeff(q,p))*coeff(p,p) + ei_conj(coeff(q,q))*coeff(p,q),
|
||||
ei_abs2(coeff(q,p)) + ei_abs2(coeff(q,q)),
|
||||
c,s);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
inline void ei_normalizeJacobi(Scalar *c, Scalar *s, const Scalar& x, const Scalar& y)
|
||||
{
|
||||
Scalar a = x * *c - y * *s;
|
||||
Scalar b = x * *s + y * *c;
|
||||
if(ei_abs(b)>ei_abs(a)) {
|
||||
Scalar x = *c;
|
||||
*c = -*s;
|
||||
*s = x;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename VectorX, typename VectorY>
|
||||
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, typename VectorX::Scalar c, typename VectorY::Scalar s)
|
||||
template<typename VectorX, typename VectorY, typename JacobiScalar>
|
||||
void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s)
|
||||
{
|
||||
typedef typename VectorX::Scalar Scalar;
|
||||
ei_assert(_x.size() == _y.size());
|
||||
@ -138,7 +117,7 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
|
||||
Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
|
||||
|
||||
if (incrx==1 && incry==1)
|
||||
if((VectorX::Flags & VectorY::Flags & PacketAccessBit) && incrx==1 && incry==1)
|
||||
{
|
||||
// both vectors are sequentially stored in memory => vectorization
|
||||
typedef typename ei_packet_traits<Scalar>::type Packet;
|
||||
@ -147,16 +126,16 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
int alignedStart = ei_alignmentOffset(y, size);
|
||||
int alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
|
||||
|
||||
const Packet pc = ei_pset1(c);
|
||||
const Packet ps = ei_pset1(s);
|
||||
const Packet pc = ei_pset1(Scalar(c));
|
||||
const Packet ps = ei_pset1(Scalar(s));
|
||||
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
|
||||
|
||||
for(int i=0; i<alignedStart; ++i)
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi - ei_conj(s) * yi;
|
||||
y[i] = s * xi + c * yi;
|
||||
x[i] = c * xi + ei_conj(s) * yi;
|
||||
y[i] = - s * xi + ei_conj(c) * yi;
|
||||
}
|
||||
|
||||
Scalar* px = x + alignedStart;
|
||||
@ -168,8 +147,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
{
|
||||
Packet xi = ei_pload(px);
|
||||
Packet yi = ei_pload(py);
|
||||
ei_pstore(px, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstore(py, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
|
||||
ei_pstore(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstore(py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
|
||||
px += PacketSize;
|
||||
py += PacketSize;
|
||||
}
|
||||
@ -183,10 +162,10 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
Packet xi1 = ei_ploadu(px+PacketSize);
|
||||
Packet yi = ei_pload (py);
|
||||
Packet yi1 = ei_pload (py+PacketSize);
|
||||
ei_pstoreu(px, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstoreu(px+PacketSize, ei_psub(ei_pmul(pc,xi1),cj.pmul(ps,yi1)));
|
||||
ei_pstore (py, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
|
||||
ei_pstore (py+PacketSize, ei_padd(ei_pmul(ps,xi1),ei_pmul(pc,yi1)));
|
||||
ei_pstoreu(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstoreu(px+PacketSize, ei_padd(ei_pmul(pc,xi1),cj.pmul(ps,yi1)));
|
||||
ei_pstore (py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
|
||||
ei_pstore (py+PacketSize, ei_psub(ei_pmul(pc,yi1),ei_pmul(ps,xi1)));
|
||||
px += Peeling*PacketSize;
|
||||
py += Peeling*PacketSize;
|
||||
}
|
||||
@ -194,8 +173,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
{
|
||||
Packet xi = ei_ploadu(x+peelingEnd);
|
||||
Packet yi = ei_pload (y+peelingEnd);
|
||||
ei_pstoreu(x+peelingEnd, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstore (y+peelingEnd, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
|
||||
ei_pstoreu(x+peelingEnd, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
|
||||
ei_pstore (y+peelingEnd, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
|
||||
}
|
||||
}
|
||||
|
||||
@ -203,8 +182,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
{
|
||||
Scalar xi = x[i];
|
||||
Scalar yi = y[i];
|
||||
x[i] = c * xi - ei_conj(s) * yi;
|
||||
y[i] = s * xi + c * yi;
|
||||
x[i] = c * xi + ei_conj(s) * yi;
|
||||
y[i] = -s * xi + ei_conj(c) * yi;
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -213,8 +192,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
|
||||
{
|
||||
Scalar xi = *x;
|
||||
Scalar yi = *y;
|
||||
*x = c * xi - ei_conj(s) * yi;
|
||||
*y = s * xi + c * yi;
|
||||
*x = c * xi + ei_conj(s) * yi;
|
||||
*y = -s * xi + ei_conj(c) * yi;
|
||||
x += incrx;
|
||||
y += incry;
|
||||
}
|
||||
|
258
Eigen/src/SVD/JacobiSVD.h
Normal file
258
Eigen/src/SVD/JacobiSVD.h
Normal file
@ -0,0 +1,258 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Jacobi SVD decomposition of a square matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \param ComputeU whether the U matrix should be computed
|
||||
* \param ComputeV whether the V matrix should be computed
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename MatrixType, unsigned int Options> class JacobiSVD
|
||||
{
|
||||
private:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
ComputeU = 1,
|
||||
ComputeV = 1,
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_ENUM_MIN(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic, MatrixOptions> DummyMatrixType;
|
||||
typedef typename ei_meta_if<ComputeU,
|
||||
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
|
||||
DummyMatrixType>::ret MatrixUType;
|
||||
typedef typename ei_meta_if<ComputeV,
|
||||
Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
|
||||
DummyMatrixType>::ret MatrixVType;
|
||||
typedef Matrix<RealScalar, DiagSizeAtCompileTime, 1,
|
||||
Options, MaxDiagSizeAtCompileTime, 1> SingularValuesType;
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, MatrixOptions, 1, MaxRowsAtCompileTime> RowType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, MatrixOptions, MaxRowsAtCompileTime, 1> ColType;
|
||||
|
||||
public:
|
||||
|
||||
JacobiSVD() : m_isInitialized(false) {}
|
||||
|
||||
JacobiSVD(const MatrixType& matrix) : m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
JacobiSVD& compute(const MatrixType& matrix);
|
||||
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
const MatrixUType& matrixV() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
bool m_isInitialized;
|
||||
|
||||
template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
|
||||
friend struct ei_svd_precondition_2x2_block_to_be_real;
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct ei_svd_precondition_2x2_block_to_be_real
|
||||
{
|
||||
static void run(MatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
|
||||
};
|
||||
|
||||
template<typename MatrixType, unsigned int Options>
|
||||
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
||||
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
|
||||
static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
|
||||
{
|
||||
Scalar c, s, z;
|
||||
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
|
||||
if(n==0)
|
||||
{
|
||||
z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(ComputeU) svd.m_matrixU.col(p) *= ei_conj(z);
|
||||
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
|
||||
}
|
||||
else
|
||||
{
|
||||
c = ei_conj(work_matrix.coeff(p,p)) / n;
|
||||
s = work_matrix.coeff(q,p) / n;
|
||||
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
|
||||
if(ComputeU) svd.m_matrixU.applyJacobiOnTheRight(p,q,ei_conj(c),-s);
|
||||
if(work_matrix.coeff(p,q) != Scalar(0))
|
||||
{
|
||||
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.col(q) *= z;
|
||||
if(ComputeV) svd.m_matrixV.col(q) *= z;
|
||||
}
|
||||
if(work_matrix.coeff(q,q) != Scalar(0))
|
||||
{
|
||||
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename RealScalar>
|
||||
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
|
||||
RealScalar *c_left, RealScalar *s_left,
|
||||
RealScalar *c_right, RealScalar *s_right)
|
||||
{
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
|
||||
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
|
||||
RealScalar c1, s1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
{
|
||||
c1 = 0;
|
||||
s1 = d > 0 ? 1 : -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
c1 = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
|
||||
s1 = c1 * u;
|
||||
}
|
||||
m.applyJacobiOnTheLeft(0,1,c1,s1);
|
||||
RealScalar c2, s2;
|
||||
m.makeJacobi(0,1,&c2,&s2);
|
||||
*c_left = c1*c2 + s1*s2;
|
||||
*s_left = s1*c2 - c1*s2;
|
||||
*c_right = c2;
|
||||
*s_right = s2;
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int Options>
|
||||
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
|
||||
{
|
||||
MatrixType work_matrix(matrix);
|
||||
int size = matrix.rows();
|
||||
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
|
||||
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
|
||||
m_singularValues.resize(size);
|
||||
const RealScalar precision = 2 * epsilon<Scalar>();
|
||||
|
||||
sweep_again:
|
||||
for(int p = 1; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
{
|
||||
if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
|
||||
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
|
||||
{
|
||||
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
|
||||
|
||||
RealScalar c_left, s_left, c_right, s_right;
|
||||
ei_real_2x2_jacobi_svd(work_matrix, p, q, &c_left, &s_left, &c_right, &s_right);
|
||||
|
||||
work_matrix.applyJacobiOnTheLeft(p,q,c_left,s_left);
|
||||
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c_left,-s_left);
|
||||
|
||||
work_matrix.applyJacobiOnTheRight(p,q,c_right,s_right);
|
||||
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c_right,s_right);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
|
||||
RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
|
||||
for(int p = 0; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
|
||||
goto sweep_again;
|
||||
for(int q = p+1; q < size; ++q)
|
||||
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
|
||||
goto sweep_again;
|
||||
}
|
||||
|
||||
for(int i = 0; i < size; ++i)
|
||||
{
|
||||
RealScalar a = ei_abs(work_matrix.coeff(i,i));
|
||||
m_singularValues.coeffRef(i) = a;
|
||||
if(ComputeU && (a!=RealScalar(0))) m_matrixU.col(i) *= work_matrix.coeff(i,i)/a;
|
||||
}
|
||||
|
||||
for(int i = 0; i < size; i++)
|
||||
{
|
||||
int pos;
|
||||
m_singularValues.end(size-i).maxCoeff(&pos);
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
|
||||
if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
|
||||
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
#endif // EIGEN_JACOBISVD_H
|
@ -1,169 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_JACOBISQUARESVD_H
|
||||
#define EIGEN_JACOBISQUARESVD_H
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class JacobiSquareSVD
|
||||
*
|
||||
* \brief Jacobi SVD decomposition of a square matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \param ComputeU whether the U matrix should be computed
|
||||
* \param ComputeV whether the V matrix should be computed
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename MatrixType, bool ComputeU, bool ComputeV> class JacobiSquareSVD
|
||||
{
|
||||
private:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, Dynamic, Dynamic, Options> DummyMatrixType;
|
||||
typedef typename ei_meta_if<ComputeU,
|
||||
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
|
||||
DummyMatrixType>::ret MatrixUType;
|
||||
typedef typename Diagonal<MatrixType,0>::PlainMatrixType SingularValuesType;
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> RowType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColType;
|
||||
|
||||
public:
|
||||
|
||||
JacobiSquareSVD() : m_isInitialized(false) {}
|
||||
|
||||
JacobiSquareSVD(const MatrixType& matrix) : m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
JacobiSquareSVD& compute(const MatrixType& matrix);
|
||||
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
const MatrixUType& matrixV() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixUType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
template<typename MatrixType, bool ComputeU, bool ComputeV>
|
||||
JacobiSquareSVD<MatrixType, ComputeU, ComputeV>& JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType& matrix)
|
||||
{
|
||||
MatrixType work_matrix(matrix);
|
||||
int size = matrix.rows();
|
||||
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
|
||||
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
|
||||
m_singularValues.resize(size);
|
||||
const RealScalar precision = 2 * epsilon<Scalar>();
|
||||
|
||||
sweep_again:
|
||||
for(int p = 1; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
{
|
||||
Scalar c, s;
|
||||
while(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
|
||||
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
|
||||
{
|
||||
if(work_matrix.makeJacobiForAtA(p,q,&c,&s))
|
||||
{
|
||||
work_matrix.applyJacobiOnTheRight(p,q,c,s);
|
||||
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s);
|
||||
}
|
||||
if(work_matrix.makeJacobiForAAt(p,q,&c,&s))
|
||||
{
|
||||
ei_normalizeJacobi(&c, &s, work_matrix.coeff(p,p), work_matrix.coeff(q,p)),
|
||||
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
|
||||
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c,s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
|
||||
RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
|
||||
for(int p = 0; p < size; ++p)
|
||||
{
|
||||
for(int q = 0; q < p; ++q)
|
||||
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
|
||||
goto sweep_again;
|
||||
for(int q = p+1; q < size; ++q)
|
||||
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
|
||||
goto sweep_again;
|
||||
}
|
||||
|
||||
m_singularValues = work_matrix.diagonal().cwise().abs();
|
||||
RealScalar biggestSingularValue = m_singularValues.maxCoeff();
|
||||
|
||||
for(int i = 0; i < size; ++i)
|
||||
{
|
||||
RealScalar a = ei_abs(work_matrix.coeff(i,i));
|
||||
m_singularValues.coeffRef(i) = a;
|
||||
if(ComputeU && !ei_isMuchSmallerThan(a, biggestSingularValue)) m_matrixU.col(i) *= work_matrix.coeff(i,i)/a;
|
||||
}
|
||||
|
||||
for(int i = 0; i < size; i++)
|
||||
{
|
||||
int pos;
|
||||
m_singularValues.end(size-i).maxCoeff(&pos);
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
|
||||
if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
|
||||
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
#endif // EIGEN_JACOBISQUARESVD_H
|
@ -126,6 +126,7 @@ ei_add_test(qr_fullpivoting)
|
||||
ei_add_test(eigensolver_selfadjoint " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(eigensolver_generic " " "${GSL_LIBRARIES}")
|
||||
ei_add_test(svd)
|
||||
ei_add_test(jacobisvd ${EI_OFLAG})
|
||||
ei_add_test(geo_orthomethods)
|
||||
ei_add_test(geo_homogeneous)
|
||||
ei_add_test(geo_quaternion)
|
||||
|
105
test/jacobisvd.cpp
Normal file
105
test/jacobisvd.cpp
Normal file
@ -0,0 +1,105 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/SVD>
|
||||
#include <Eigen/LU>
|
||||
|
||||
template<typename MatrixType> void svd(const MatrixType& m, bool pickrandom = true)
|
||||
{
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
|
||||
|
||||
MatrixType a;
|
||||
if(pickrandom) a = MatrixType::Random(rows,cols);
|
||||
else a = m;
|
||||
|
||||
JacobiSVD<MatrixType> svd(a);
|
||||
MatrixType sigma = MatrixType::Zero(rows,cols);
|
||||
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
|
||||
MatrixUType u = svd.matrixU();
|
||||
MatrixVType v = svd.matrixV();
|
||||
|
||||
VERIFY_IS_APPROX(a, u * sigma * v.adjoint());
|
||||
VERIFY_IS_UNITARY(u);
|
||||
VERIFY_IS_UNITARY(v);
|
||||
}
|
||||
|
||||
template<typename MatrixType> void svd_verify_assert()
|
||||
{
|
||||
MatrixType tmp;
|
||||
|
||||
SVD<MatrixType> svd;
|
||||
//VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp))
|
||||
VERIFY_RAISES_ASSERT(svd.matrixU())
|
||||
VERIFY_RAISES_ASSERT(svd.singularValues())
|
||||
VERIFY_RAISES_ASSERT(svd.matrixV())
|
||||
/*VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))*/
|
||||
}
|
||||
|
||||
void test_jacobisvd()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
Matrix2cd m;
|
||||
m << 0, 1,
|
||||
0, 1;
|
||||
CALL_SUBTEST( svd(m, false) );
|
||||
m << 1, 0,
|
||||
1, 0;
|
||||
CALL_SUBTEST( svd(m, false) );
|
||||
Matrix2d n;
|
||||
n << 1, 1,
|
||||
1, -1;
|
||||
CALL_SUBTEST( svd(n, false) );
|
||||
CALL_SUBTEST( svd(Matrix3f()) );
|
||||
CALL_SUBTEST( svd(Matrix4d()) );
|
||||
CALL_SUBTEST( svd(MatrixXf(50,50)) );
|
||||
// CALL_SUBTEST( svd(MatrixXd(14,7)) );
|
||||
CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
||||
CALL_SUBTEST( svd(MatrixXd(30,30)) );
|
||||
}
|
||||
CALL_SUBTEST( svd(MatrixXf(200,200)) );
|
||||
CALL_SUBTEST( svd(MatrixXcd(100,100)) );
|
||||
|
||||
CALL_SUBTEST( svd_verify_assert<Matrix3f>() );
|
||||
CALL_SUBTEST( svd_verify_assert<Matrix3d>() );
|
||||
CALL_SUBTEST( svd_verify_assert<MatrixXf>() );
|
||||
CALL_SUBTEST( svd_verify_assert<MatrixXd>() );
|
||||
}
|
Loading…
Reference in New Issue
Block a user