mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
Add no_assignment_operator to a few classes that must not be assigned, and fix a couple of warnings.
This commit is contained in:
parent
71cccf0ed8
commit
6d1f5dbaae
@ -59,7 +59,7 @@ template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl
|
||||
} // end namespace internal
|
||||
|
||||
template<typename MatrixType,int _Direction> class Homogeneous
|
||||
: public MatrixBase<Homogeneous<MatrixType,_Direction> >
|
||||
: internal::no_assignment_operator, public MatrixBase<Homogeneous<MatrixType,_Direction> >
|
||||
{
|
||||
public:
|
||||
|
||||
|
@ -511,7 +511,7 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
||||
m_perm_r.resize(m);
|
||||
m_perm_r.indices().setConstant(-1);
|
||||
marker.setConstant(-1);
|
||||
m_detPermR = 1.0; // Record the determinant of the row permutation
|
||||
m_detPermR = 1; // Record the determinant of the row permutation
|
||||
|
||||
m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
|
||||
m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
|
||||
@ -630,7 +630,7 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
|
||||
}
|
||||
|
||||
template<typename MappedSupernodalType>
|
||||
struct SparseLUMatrixLReturnType
|
||||
struct SparseLUMatrixLReturnType : internal::no_assignment_operator
|
||||
{
|
||||
typedef typename MappedSupernodalType::Index Index;
|
||||
typedef typename MappedSupernodalType::Scalar Scalar;
|
||||
@ -647,7 +647,7 @@ struct SparseLUMatrixLReturnType
|
||||
};
|
||||
|
||||
template<typename MatrixLType, typename MatrixUType>
|
||||
struct SparseLUMatrixUReturnType
|
||||
struct SparseLUMatrixUReturnType : internal::no_assignment_operator
|
||||
{
|
||||
typedef typename MatrixLType::Index Index;
|
||||
typedef typename MatrixLType::Scalar Scalar;
|
||||
@ -700,6 +700,7 @@ struct SparseLUMatrixUReturnType
|
||||
const MatrixLType& m_mapL;
|
||||
const MatrixUType& m_mapU;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename Derived, typename Rhs>
|
||||
|
@ -70,7 +70,7 @@ Index SparseLUImpl<Scalar,Index>::expand(VectorType& vec, Index& length, Index
|
||||
if(num_expansions == 0 || keep_prev)
|
||||
new_len = length ; // First time allocate requested
|
||||
else
|
||||
new_len = alpha * length ;
|
||||
new_len = Index(alpha * length);
|
||||
|
||||
VectorType old_vec; // Temporary vector to hold the previous values
|
||||
if (nbElts > 0 )
|
||||
@ -100,7 +100,7 @@ Index SparseLUImpl<Scalar,Index>::expand(VectorType& vec, Index& length, Index
|
||||
do
|
||||
{
|
||||
alpha = (alpha + 1)/2;
|
||||
new_len = alpha * length ;
|
||||
new_len = Index(alpha * length);
|
||||
try
|
||||
{
|
||||
vec.resize(new_len);
|
||||
@ -141,7 +141,7 @@ Index SparseLUImpl<Scalar,Index>::memInit(Index m, Index n, Index annz, Index lw
|
||||
Index& num_expansions = glu.num_expansions; //No memory expansions so far
|
||||
num_expansions = 0;
|
||||
glu.nzumax = glu.nzlumax = (std::max)(fillratio * annz, m*n); // estimated number of nonzeros in U
|
||||
glu.nzlmax = (std::max)(1., fillratio/4.) * annz; // estimated nnz in L factor
|
||||
glu.nzlmax = (std::max)(Index(4), fillratio) * annz / 4; // estimated nnz in L factor
|
||||
|
||||
// Return the estimated size to the user if necessary
|
||||
Index tempSpace;
|
||||
|
@ -216,13 +216,13 @@ class MappedSuperNodalMatrix<Scalar,Index>::InnerIterator
|
||||
|
||||
protected:
|
||||
const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
|
||||
const Index m_outer; // Current column
|
||||
const Index m_supno; // Current SuperNode number
|
||||
Index m_idval; //Index to browse the values in the current column
|
||||
const Index m_startidval; // Start of the column value
|
||||
const Index m_endidval; // End of the column value
|
||||
Index m_idrow; //Index to browse the row indices
|
||||
Index m_endidrow; // End index of row indices of the current column
|
||||
const Index m_outer; // Current column
|
||||
const Index m_supno; // Current SuperNode number
|
||||
Index m_idval; // Index to browse the values in the current column
|
||||
const Index m_startidval; // Start of the column value
|
||||
const Index m_endidval; // End of the column value
|
||||
Index m_idrow; // Index to browse the row indices
|
||||
Index m_endidrow; // End index of row indices of the current column
|
||||
};
|
||||
|
||||
/**
|
||||
@ -235,17 +235,17 @@ void MappedSuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) con
|
||||
{
|
||||
Index n = X.rows();
|
||||
Index nrhs = X.cols();
|
||||
const Scalar * Lval = valuePtr(); // Nonzero values
|
||||
Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
|
||||
const Scalar * Lval = valuePtr(); // Nonzero values
|
||||
Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
|
||||
work.setZero();
|
||||
for (Index k = 0; k <= nsuper(); k ++)
|
||||
{
|
||||
Index fsupc = supToCol()[k]; // First column of the current supernode
|
||||
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
|
||||
Index fsupc = supToCol()[k]; // First column of the current supernode
|
||||
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
|
||||
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
|
||||
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
|
||||
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
|
||||
Index irow; //Current index row
|
||||
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
|
||||
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
|
||||
Index irow; //Current index row
|
||||
|
||||
if (nsupc == 1 )
|
||||
{
|
||||
@ -294,4 +294,5 @@ void MappedSuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) con
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSELU_MATRIX_H
|
||||
|
@ -36,7 +36,7 @@ namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
template<typename IndexVector, typename ScalarVector>
|
||||
struct column_dfs_traits
|
||||
struct column_dfs_traits : no_assignment_operator
|
||||
{
|
||||
typedef typename ScalarVector::Scalar Scalar;
|
||||
typedef typename IndexVector::Scalar Index;
|
||||
|
@ -328,4 +328,5 @@ void test_cholesky()
|
||||
CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
|
||||
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
|
||||
VERIFY_EULER(2,1,2, Z,Y,Z);
|
||||
}
|
||||
|
||||
template<typename Scalar> void eulerangles(void)
|
||||
template<typename Scalar> void eulerangles()
|
||||
{
|
||||
typedef Matrix<Scalar,3,3> Matrix3;
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
@ -60,13 +60,13 @@ template<typename Scalar> void eulerangles(void)
|
||||
ea = m.eulerAngles(0,1,0);
|
||||
check_all_var(ea);
|
||||
|
||||
ea = (Array3::Random() + Array3(1,1,0))*M_PI*Array3(0.5,0.5,1);
|
||||
ea = (Array3::Random() + Array3(1,1,0))*Scalar(M_PI)*Array3(0.5,0.5,1);
|
||||
check_all_var(ea);
|
||||
|
||||
ea[2] = ea[0] = internal::random<Scalar>(0,M_PI);
|
||||
ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(M_PI));
|
||||
check_all_var(ea);
|
||||
|
||||
ea[0] = ea[1] = internal::random<Scalar>(0,M_PI);
|
||||
ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(M_PI));
|
||||
check_all_var(ea);
|
||||
|
||||
ea[1] = 0;
|
||||
|
@ -116,7 +116,7 @@ template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixTy
|
||||
void test_mapstride()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
EIGEN_UNUSED int maxn = 30;
|
||||
int maxn = 30;
|
||||
CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
|
||||
@ -142,5 +142,7 @@ void test_mapstride()
|
||||
CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
||||
CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
||||
CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
||||
|
||||
TEST_SET_BUT_UNUSED_VARIABLE(maxn);
|
||||
}
|
||||
}
|
||||
|
@ -22,7 +22,7 @@ template<typename MatrixType> void matrixRedux(const MatrixType& m)
|
||||
|
||||
// The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
|
||||
// failures if we underflow into denormals. Thus, we scale so that entires are close to 1.
|
||||
MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + Scalar(0.2) * m1;
|
||||
MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
||||
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
||||
|
@ -13,7 +13,7 @@ template<typename MatrixType> void verifySizeOf(const MatrixType&)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
if (MatrixType::RowsAtCompileTime!=Dynamic && MatrixType::ColsAtCompileTime!=Dynamic)
|
||||
VERIFY(sizeof(MatrixType)==sizeof(Scalar)*size_t(MatrixType::SizeAtCompileTime));
|
||||
VERIFY(sizeof(MatrixType)==sizeof(Scalar)*std::ptrdiff_t(MatrixType::SizeAtCompileTime));
|
||||
else
|
||||
VERIFY(sizeof(MatrixType)==sizeof(Scalar*) + 2 * sizeof(typename MatrixType::Index));
|
||||
}
|
||||
|
@ -58,8 +58,8 @@ initSparse(double density,
|
||||
Matrix<Scalar,Dynamic,Dynamic,Opt1>& refMat,
|
||||
SparseMatrix<Scalar,Opt2,Index>& sparseMat,
|
||||
int flags = 0,
|
||||
std::vector<Vector2i>* zeroCoords = 0,
|
||||
std::vector<Vector2i>* nonzeroCoords = 0)
|
||||
std::vector<Matrix<Index,2,1> >* zeroCoords = 0,
|
||||
std::vector<Matrix<Index,2,1> >* nonzeroCoords = 0)
|
||||
{
|
||||
enum { IsRowMajor = SparseMatrix<Scalar,Opt2,Index>::IsRowMajor };
|
||||
sparseMat.setZero();
|
||||
@ -93,11 +93,11 @@ initSparse(double density,
|
||||
//sparseMat.insertBackByOuterInner(j,i) = v;
|
||||
sparseMat.insertByOuterInner(j,i) = v;
|
||||
if (nonzeroCoords)
|
||||
nonzeroCoords->push_back(Vector2i(ai,aj));
|
||||
nonzeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
|
||||
}
|
||||
else if (zeroCoords)
|
||||
{
|
||||
zeroCoords->push_back(Vector2i(ai,aj));
|
||||
zeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
|
||||
}
|
||||
refMat(ai,aj) = v;
|
||||
}
|
||||
@ -110,8 +110,8 @@ initSparse(double density,
|
||||
Matrix<Scalar,Dynamic,Dynamic, Opt1>& refMat,
|
||||
DynamicSparseMatrix<Scalar, Opt2, Index>& sparseMat,
|
||||
int flags = 0,
|
||||
std::vector<Vector2i>* zeroCoords = 0,
|
||||
std::vector<Vector2i>* nonzeroCoords = 0)
|
||||
std::vector<Matrix<Index,2,1> >* zeroCoords = 0,
|
||||
std::vector<Matrix<Index,2,1> >* nonzeroCoords = 0)
|
||||
{
|
||||
enum { IsRowMajor = DynamicSparseMatrix<Scalar,Opt2,Index>::IsRowMajor };
|
||||
sparseMat.setZero();
|
||||
@ -142,11 +142,11 @@ initSparse(double density,
|
||||
{
|
||||
sparseMat.insertBackByOuterInner(j,i) = v;
|
||||
if (nonzeroCoords)
|
||||
nonzeroCoords->push_back(Vector2i(ai,aj));
|
||||
nonzeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
|
||||
}
|
||||
else if (zeroCoords)
|
||||
{
|
||||
zeroCoords->push_back(Vector2i(ai,aj));
|
||||
zeroCoords->push_back(Matrix<Index,2,1> (ai,aj));
|
||||
}
|
||||
refMat(ai,aj) = v;
|
||||
}
|
||||
|
@ -14,7 +14,8 @@
|
||||
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
|
||||
{
|
||||
typedef typename SparseMatrixType::Index Index;
|
||||
|
||||
typedef Matrix<Index,2,1> Vector2;
|
||||
|
||||
const Index rows = ref.rows();
|
||||
const Index cols = ref.cols();
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
@ -31,8 +32,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
||||
DenseVector vec1 = DenseVector::Random(rows);
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
std::vector<Vector2> zeroCoords;
|
||||
std::vector<Vector2> nonzeroCoords;
|
||||
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
|
||||
@ -104,11 +105,11 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
SparseMatrixType m2(rows,cols);
|
||||
if(internal::random<int>()%2)
|
||||
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
for (int k=0; k<rows/2; ++k)
|
||||
for (Index k=0; k<rows/2; ++k)
|
||||
{
|
||||
int i = internal::random<int>(0,rows-1);
|
||||
Index i = internal::random<Index>(0,rows-1);
|
||||
if (m1.coeff(i,j)==Scalar(0))
|
||||
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
||||
}
|
||||
@ -126,8 +127,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
|
||||
for (int k=0; k<rows*cols; ++k)
|
||||
{
|
||||
int i = internal::random<int>(0,rows-1);
|
||||
int j = internal::random<int>(0,cols-1);
|
||||
Index i = internal::random<Index>(0,rows-1);
|
||||
Index j = internal::random<Index>(0,cols-1);
|
||||
if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
|
||||
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
||||
else
|
||||
@ -150,8 +151,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
m2.reserve(r);
|
||||
for (int k=0; k<rows*cols; ++k)
|
||||
{
|
||||
int i = internal::random<int>(0,rows-1);
|
||||
int j = internal::random<int>(0,cols-1);
|
||||
Index i = internal::random<Index>(0,rows-1);
|
||||
Index j = internal::random<Index>(0,cols-1);
|
||||
if (m1.coeff(i,j)==Scalar(0))
|
||||
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
|
||||
if(mode==3)
|
||||
@ -167,8 +168,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
||||
SparseMatrixType m2(rows, rows);
|
||||
initSparse<Scalar>(density, refMat2, m2);
|
||||
int j0 = internal::random<int>(0,rows-1);
|
||||
int j1 = internal::random<int>(0,rows-1);
|
||||
Index j0 = internal::random<Index>(0,rows-1);
|
||||
Index j1 = internal::random<Index>(0,rows-1);
|
||||
if(SparseMatrixType::IsRowMajor)
|
||||
VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
|
||||
else
|
||||
@ -181,17 +182,17 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
|
||||
SparseMatrixType m3(rows,rows);
|
||||
m3.reserve(VectorXi::Constant(rows,rows/2));
|
||||
for(int j=0; j<rows; ++j)
|
||||
for(int k=0; k<j; ++k)
|
||||
for(Index j=0; j<rows; ++j)
|
||||
for(Index k=0; k<j; ++k)
|
||||
m3.insertByOuterInner(j,k) = k+1;
|
||||
for(int j=0; j<rows; ++j)
|
||||
for(Index j=0; j<rows; ++j)
|
||||
{
|
||||
VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
|
||||
if(j>0)
|
||||
VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
|
||||
}
|
||||
m3.makeCompressed();
|
||||
for(int j=0; j<rows; ++j)
|
||||
for(Index j=0; j<rows; ++j)
|
||||
{
|
||||
VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
|
||||
if(j>0)
|
||||
@ -210,9 +211,9 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
initSparse<Scalar>(density, refMat2, m2);
|
||||
if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
|
||||
|
||||
int j0 = internal::random<int>(0,rows-2);
|
||||
int j1 = internal::random<int>(0,rows-2);
|
||||
int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
|
||||
Index j0 = internal::random<Index>(0,rows-2);
|
||||
Index j1 = internal::random<Index>(0,rows-2);
|
||||
Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
|
||||
if(SparseMatrixType::IsRowMajor)
|
||||
VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
|
||||
else
|
||||
@ -300,9 +301,9 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
||||
SparseMatrixType m2(rows, rows);
|
||||
initSparse<Scalar>(density, refMat2, m2);
|
||||
int j0 = internal::random<int>(0,rows-2);
|
||||
int j1 = internal::random<int>(0,rows-2);
|
||||
int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
|
||||
Index j0 = internal::random<Index>(0,rows-2);
|
||||
Index j1 = internal::random<Index>(0,rows-2);
|
||||
Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
|
||||
if(SparseMatrixType::IsRowMajor)
|
||||
VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
|
||||
else
|
||||
@ -315,7 +316,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
|
||||
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
|
||||
|
||||
int i = internal::random<int>(0,m2.outerSize()-1);
|
||||
Index i = internal::random<Index>(0,m2.outerSize()-1);
|
||||
if(SparseMatrixType::IsRowMajor) {
|
||||
m2.innerVector(i) = m2.innerVector(i) * s1;
|
||||
refMat2.row(i) = refMat2.row(i) * s1;
|
||||
@ -334,10 +335,10 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
refM2.setZero();
|
||||
int countFalseNonZero = 0;
|
||||
int countTrueNonZero = 0;
|
||||
for (int j=0; j<m2.outerSize(); ++j)
|
||||
for (Index j=0; j<m2.outerSize(); ++j)
|
||||
{
|
||||
m2.startVec(j);
|
||||
for (int i=0; i<m2.innerSize(); ++i)
|
||||
for (Index i=0; i<m2.innerSize(); ++i)
|
||||
{
|
||||
float x = internal::random<float>(0,1);
|
||||
if (x<0.1)
|
||||
@ -378,8 +379,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
refMat.setZero();
|
||||
for(int i=0;i<ntriplets;++i)
|
||||
{
|
||||
int r = internal::random<int>(0,rows-1);
|
||||
int c = internal::random<int>(0,cols-1);
|
||||
Index r = internal::random<Index>(0,rows-1);
|
||||
Index c = internal::random<Index>(0,cols-1);
|
||||
Scalar v = internal::random<Scalar>();
|
||||
triplets.push_back(TripletType(r,c,v));
|
||||
refMat(r,c) += v;
|
||||
@ -456,8 +457,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
|
||||
inc.push_back(std::pair<int,int>(0,3));
|
||||
|
||||
for(size_t i = 0; i< inc.size(); i++) {
|
||||
int incRows = inc[i].first;
|
||||
int incCols = inc[i].second;
|
||||
Index incRows = inc[i].first;
|
||||
Index incCols = inc[i].second;
|
||||
SparseMatrixType m1(rows, cols);
|
||||
DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
|
||||
initSparse<Scalar>(density, refMat1, m1);
|
||||
@ -502,7 +503,7 @@ void test_sparse_basic()
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
|
||||
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(s, s)) ));
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(s, s)) ));
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) ));
|
||||
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) ));
|
||||
}
|
||||
}
|
||||
|
@ -107,7 +107,7 @@ void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
|
||||
* http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
|
||||
*/
|
||||
template<typename _FunctorType>
|
||||
class LevenbergMarquardt
|
||||
class LevenbergMarquardt : internal::no_assignment_operator
|
||||
{
|
||||
public:
|
||||
typedef _FunctorType FunctorType;
|
||||
|
Loading…
Reference in New Issue
Block a user