mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-09 07:00:27 +08:00
sparse module: added some documentation for the LLT solver
This commit is contained in:
parent
cfca7f71fe
commit
6be0131774
@ -43,7 +43,8 @@ namespace Eigen {
|
||||
#include "src/Sparse/SparseSetter.h"
|
||||
#include "src/Sparse/SparseProduct.h"
|
||||
#include "src/Sparse/TriangularSolver.h"
|
||||
#include "src/Sparse/SparseCholesky.h"
|
||||
#include "src/Sparse/SparseLLT.h"
|
||||
#include "src/Sparse/SparseLU.h"
|
||||
|
||||
#ifdef EIGEN_CHOLMOD_SUPPORT
|
||||
# include "src/Sparse/CholmodSupport.h"
|
||||
|
@ -199,15 +199,8 @@ void SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
ei_assert(size==b.rows());
|
||||
|
||||
if (m_status & MatrixLIsDirty)
|
||||
{
|
||||
// ei_assert(!(m_status & SupernodalFactorIsDirty));
|
||||
// taucs_supernodal_solve_llt(m_taucsSupernodalFactor,double* b);
|
||||
matrixL();
|
||||
}
|
||||
// else
|
||||
{
|
||||
Base::solveInPlace(b);
|
||||
}
|
||||
Base::solveInPlace(b);
|
||||
}
|
||||
|
||||
#endif // EIGEN_CHOLMODSUPPORT_H
|
||||
|
@ -22,35 +22,21 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_SPARSECHOLESKY_H
|
||||
#define EIGEN_SPARSECHOLESKY_H
|
||||
|
||||
enum SparseBackend {
|
||||
DefaultBackend,
|
||||
Taucs,
|
||||
Cholmod,
|
||||
SuperLU
|
||||
};
|
||||
|
||||
enum {
|
||||
CompleteFactorization = 0x0, // full is the default
|
||||
IncompleteFactorization = 0x1,
|
||||
MemoryEfficient = 0x2,
|
||||
SupernodalMultifrontal = 0x4,
|
||||
SupernodalLeftLooking = 0x8
|
||||
};
|
||||
#ifndef EIGEN_SPARSELLT_H
|
||||
#define EIGEN_SPARSELLT_H
|
||||
|
||||
/** \ingroup Sparse_Module
|
||||
*
|
||||
* \class SparseLLT
|
||||
*
|
||||
* \brief Standard LLT decomposition of a matrix and associated features
|
||||
* \brief LLT Cholesky decomposition of a sparse matrix and associated features
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LLT decomposition
|
||||
* \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
|
||||
*
|
||||
* \sa class LLT, class LDLT
|
||||
*/
|
||||
template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
|
||||
template<typename MatrixType, int Backend = DefaultBackend>
|
||||
class SparseLLT
|
||||
{
|
||||
protected:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
@ -64,12 +50,15 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
|
||||
|
||||
public:
|
||||
|
||||
/** Creates a dummy LLT factorization object with flags \a flags. */
|
||||
SparseLLT(int flags = 0)
|
||||
: m_flags(flags), m_status(0)
|
||||
{
|
||||
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
||||
}
|
||||
|
||||
/** Creates a LLT object and compute the respective factorization of \a matrix using
|
||||
* flags \a flags. */
|
||||
SparseLLT(const MatrixType& matrix, int flags = 0)
|
||||
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
||||
{
|
||||
@ -77,18 +66,48 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
||||
*
|
||||
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
||||
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
||||
* useful to initialize an iterative solver.
|
||||
*
|
||||
* \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
|
||||
* even if the matrix is positive definite.
|
||||
*
|
||||
* Note that the exact meaning of this parameter might depends on the actual
|
||||
* backend. Moreover, not all backends support this feature.
|
||||
*
|
||||
* \sa precision() */
|
||||
void setPrecision(RealScalar v) { m_precision = v; }
|
||||
|
||||
/** \returns the current precision.
|
||||
*
|
||||
* \sa setPrecision() */
|
||||
RealScalar precision() const { return m_precision; }
|
||||
|
||||
/** Sets the flags. Possible values are:
|
||||
* - CompleteFactorization
|
||||
* - IncompleteFactorization
|
||||
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
||||
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
||||
* overloads the MemoryEfficient flags)
|
||||
*
|
||||
* \sa flags() */
|
||||
void setFlags(int f) { m_flags = f; }
|
||||
/** \returns the current flags */
|
||||
int flags() const { return m_flags; }
|
||||
|
||||
/** Computes/re-computes the LLT factorization */
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the lower triangular matrix L */
|
||||
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
||||
|
||||
template<typename Derived>
|
||||
void solveInPlace(MatrixBase<Derived> &b) const;
|
||||
bool solveInPlace(MatrixBase<Derived> &b) const;
|
||||
|
||||
/** \returns true if the factorization succeeded */
|
||||
inline bool succeeded(void) const { return m_succeeded; }
|
||||
@ -101,7 +120,8 @@ template<typename MatrixType, int Backend = DefaultBackend> class SparseLLT
|
||||
bool m_succeeded;
|
||||
};
|
||||
|
||||
/** Computes / recomputes the LLT decomposition A = LL^* = U^*U of \a matrix
|
||||
/** Computes / recomputes the LLT decomposition of matrix \a a
|
||||
* using the default algorithm.
|
||||
*/
|
||||
template<typename MatrixType, int Backend>
|
||||
void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
|
||||
@ -109,20 +129,19 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
|
||||
assert(a.rows()==a.cols());
|
||||
const int size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
// const RealScalar eps = ei_sqrt(precision<Scalar>());
|
||||
|
||||
// allocate a temporary vector for accumulations
|
||||
AmbiVector<Scalar> tempVector(size);
|
||||
RealScalar density = a.nonZeros()/RealScalar(size*size);
|
||||
|
||||
// TODO estimate the number of nnz
|
||||
// TODO estimate the number of non zeros
|
||||
m_matrix.startFill(a.nonZeros()*2);
|
||||
for (int j = 0; j < size; ++j)
|
||||
{
|
||||
Scalar x = ei_real(a.coeff(j,j));
|
||||
int endSize = size-j-1;
|
||||
|
||||
// TODO better estimate the density !
|
||||
// TODO better estimate of the density !
|
||||
tempVector.init(density>0.001? IsDense : IsSparse);
|
||||
tempVector.setBounds(j+1,size);
|
||||
tempVector.setZero();
|
||||
@ -163,15 +182,18 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
|
||||
m_matrix.endFill();
|
||||
}
|
||||
|
||||
/** Computes b = L^-T L^-1 b */
|
||||
template<typename MatrixType, int Backend>
|
||||
template<typename Derived>
|
||||
void SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
||||
{
|
||||
const int size = m_matrix.rows();
|
||||
ei_assert(size==b.rows());
|
||||
|
||||
m_matrix.solveTriangularInPlace(b);
|
||||
m_matrix.adjoint().solveTriangularInPlace(b);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_BASICSPARSECHOLESKY_H
|
||||
#endif // EIGEN_SPARSELLT_H
|
@ -31,6 +31,24 @@
|
||||
#define EIGEN_DBG_SPARSE(X) X
|
||||
#endif
|
||||
|
||||
enum SparseBackend {
|
||||
DefaultBackend,
|
||||
Taucs,
|
||||
Cholmod,
|
||||
SuperLU,
|
||||
UmfPack
|
||||
};
|
||||
|
||||
// solver flags
|
||||
enum {
|
||||
CompleteFactorization = 0x0000, // the default
|
||||
IncompleteFactorization = 0x0001,
|
||||
MemoryEfficient = 0x0002,
|
||||
// For LLT Cholesky:
|
||||
SupernodalMultifrontal = 0x0010,
|
||||
SupernodalLeftLooking = 0x0020
|
||||
};
|
||||
|
||||
template<typename Derived> class SparseMatrixBase;
|
||||
template<typename _Scalar, int _Flags = 0> class SparseMatrix;
|
||||
template<typename _Scalar, int _Flags = 0> class HashMatrix;
|
||||
|
Loading…
Reference in New Issue
Block a user