Adding non-deferrenciable pointer track for ComputeCpp backend; Adding TensorConvolutionOp for ComputeCpp; fixing typos. modifying TensorDeviceSycl to use the LegacyPointer class.

This commit is contained in:
Mehdi Goli 2017-01-19 11:30:59 +00:00
parent e46e722381
commit 6bdd15f572
16 changed files with 1390 additions and 149 deletions

View File

@ -100,7 +100,7 @@ class IndexMapper {
}
} else {
for (int i = NumDims - 1; i >= 0; --i) {
if (i + 1 < offset) {
if (static_cast<size_t>(i + 1) < offset) {
m_cudaInputStrides[i] =
m_cudaInputStrides[i + 1] * cudaInputDimensions[i + 1];
m_cudaOutputStrides[i] =

View File

@ -0,0 +1,476 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_SYCL_H
namespace Eigen {
/** \class TensorConvolution
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor convolution class.
*
*
*/
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
struct EigenConvolutionKernel1D{
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
internal::IndexMapper<Index, InputDims, 1, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
Kernel_accessor kernel_filter;
const size_t kernelSize, range_x, range_y;
Buffer_accessor buffer_acc;
Local_accessor local_acc;
FunctorExpr functors;
TupleType tuple_of_accessors;
EigenConvolutionKernel1D(internal::IndexMapper<Index, InputDims, 1, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
Kernel_accessor kernel_filter_, const size_t kernelSize_, const size_t range_x_, const size_t range_y_,
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize(kernelSize_), range_x(range_x_), range_y(range_y_),
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
void operator()(cl::sycl::nd_item<2> itemID) {
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize -1); //the required row to be calculated for the for each plane in shered memory
const size_t plane_kernel_offset = itemID.get_local(1) * num_x_input;
const size_t first_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
const size_t plane_tensor_offset =indexMapper.mapCudaInputPlaneToTensorInputOffset(itemID.get_global(1));
/// fill the shared memory
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
const size_t local_index = i + plane_kernel_offset ;
const size_t tensor_index = plane_tensor_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_input_start);
if(((i + first_input_start) < (range_x +kernelSize-1)) && itemID.get_global(1)< range_y){
local_acc[local_index] = device_evaluator.coeff(tensor_index);
}
else local_acc[local_index]=0.0f;
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// calculate the convolution
const int first_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // output start x
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y){
CoeffReturnType result = static_cast<CoeffReturnType>(0);
const size_t index = plane_kernel_offset+ itemID.get_local(0);
for (size_t k = 0; k < kernelSize; ++k) {
result += (local_acc[k + index] * kernel_ptr[k]);
}
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(itemID.get_global(1))
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + first_output_start);
buffer_ptr[tensor_index] = result;
}
}
};
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
struct EigenConvolutionKernel2D{
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
internal::IndexMapper<Index, InputDims, 2, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
Kernel_accessor kernel_filter;
const size_t kernelSize_x, kernelSize_y, range_x, range_y , range_z;
Buffer_accessor buffer_acc;
Local_accessor local_acc;
FunctorExpr functors;
TupleType tuple_of_accessors;
EigenConvolutionKernel2D(internal::IndexMapper<Index, InputDims, 2, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
Kernel_accessor kernel_filter_, const size_t kernelSize_x_, const size_t kernelSize_y_ ,const size_t range_x_, const size_t range_y_, const size_t range_z_,
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize_x(kernelSize_x_), kernelSize_y(kernelSize_y_), range_x(range_x_), range_y(range_y_), range_z(range_z_),
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
void operator()(cl::sycl::nd_item<3> itemID) {
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize_x -1); //the required row to be calculated for the for each plane in shered memory
const size_t num_y_input = (itemID.get_local_range()[1] +kernelSize_y -1); //the required row to be calculated for the for each plane in shered memory
const size_t plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(itemID.get_global(2));
const size_t plane_kernel_offset = itemID.get_local(2) * num_y_input;
/// fill the shared memory
const size_t first_x_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
const size_t first_y_input_start = itemID.get_group(1)*itemID.get_local_range()[1];
for (size_t j = itemID.get_local(1); j < num_y_input; j += itemID.get_local_range()[1]) {
const size_t local_input_offset = num_x_input * (j + plane_kernel_offset);
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
const size_t local_index = i + local_input_offset;
const size_t tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_x_input_start, j+ first_y_input_start );
if(((i + first_x_input_start) < (range_x +kernelSize_x-1)) &&((j + first_y_input_start) < (range_y +kernelSize_y-1)) && itemID.get_global(2)< range_z){
local_acc[local_index] = device_evaluator.coeff(tensor_index);
}
else local_acc[local_index]=0.0f;
}
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// calculate the convolution
const size_t fitst_x_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // output start x
const size_t fitst_y_output_start =itemID.get_group(1)*(itemID.get_local_range()[1]); // output start y
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y && itemID.get_global(2)< range_z){
CoeffReturnType result = static_cast<CoeffReturnType>(0);
for (size_t j = 0; j < kernelSize_y; j++) {
size_t kernel_offset =kernelSize_x * j;
const size_t index = (num_x_input*(plane_kernel_offset + j+ itemID.get_local(1))) + itemID.get_local(0);
for (size_t i = 0; i < kernelSize_x; i++) {
result += (local_acc[i + index] * kernel_ptr[i+kernel_offset]);
}
}
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(itemID.get_global(2))
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + fitst_x_output_start, itemID.get_local(1) + fitst_y_output_start);
buffer_ptr[tensor_index] = result;
}
}
};
template <typename CoeffReturnType, typename KernelType, typename HostExpr, typename FunctorExpr, typename Index,
typename InputDims, typename Kernel_accessor, typename Buffer_accessor, typename Local_accessor, typename TupleType>
struct EigenConvolutionKernel3D{
typedef typename TensorSycl::internal::createPlaceHolderExpression<HostExpr>::Type PlaceHolderExpr;
internal::IndexMapper<Index, InputDims, 3, Eigen::internal::traits<HostExpr>::Layout> indexMapper;
Kernel_accessor kernel_filter;
const size_t kernelSize_x, kernelSize_y, kernelSize_z, range_x, range_y , range_z, numP;
Buffer_accessor buffer_acc;
Local_accessor local_acc;
FunctorExpr functors;
TupleType tuple_of_accessors;
EigenConvolutionKernel3D(internal::IndexMapper<Index, InputDims, 3, Eigen::internal::traits<HostExpr>::Layout> indexMapper_,
Kernel_accessor kernel_filter_, const size_t kernelSize_x_, const size_t kernelSize_y_ , const size_t kernelSize_z_ ,
const size_t range_x_, const size_t range_y_, const size_t range_z_, const size_t numP_,
Buffer_accessor buffer_acc_, Local_accessor local_acc_, FunctorExpr functors_, TupleType tuple_of_accessors_)
:indexMapper(indexMapper_), kernel_filter(kernel_filter_), kernelSize_x(kernelSize_x_), kernelSize_y(kernelSize_y_),
kernelSize_z(kernelSize_z_), range_x(range_x_), range_y(range_y_), range_z(range_z_), numP(numP_),
buffer_acc(buffer_acc_), local_acc(local_acc_), functors(functors_), tuple_of_accessors(tuple_of_accessors_) {}
void operator()(cl::sycl::nd_item<3> itemID) {
typedef typename TensorSycl::internal::ConvertToDeviceExpression<HostExpr>::Type DevExpr;
auto device_expr =TensorSycl::internal::createDeviceExpression<DevExpr, PlaceHolderExpr>(functors, tuple_of_accessors);
auto device_evaluator = Eigen::TensorEvaluator<DevExpr, Eigen::DefaultDevice>(device_expr.expr, Eigen::DefaultDevice());
auto buffer_ptr = ConvertToActualTypeSycl(CoeffReturnType, buffer_acc);
auto kernel_ptr = ConvertToActualTypeSycl(KernelType, kernel_filter);
const size_t num_x_input = (itemID.get_local_range()[0] +kernelSize_x -1); //the required row to be calculated for the for each plane in shered memory
const size_t num_y_input = (itemID.get_local_range()[1] +kernelSize_y -1); //the required row to be calculated for the for each plane in shered memory
const size_t num_z_input = (itemID.get_local_range()[2] +kernelSize_z -1); //the required row to be calculated for the for each plane in shered memory
const size_t first_x_input_start = itemID.get_group(0)*itemID.get_local_range()[0];
const size_t first_y_input_start = itemID.get_group(1)*itemID.get_local_range()[1];
const size_t first_z_input_start = itemID.get_group(2)*itemID.get_local_range()[2];
for(size_t p=0; p<numP; p++){
/// fill the shared memory
const size_t plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
for (size_t k = itemID.get_local(2); k < num_z_input; k += itemID.get_local_range()[2]) {
for (size_t j = itemID.get_local(1); j < num_y_input; j += itemID.get_local_range()[1]) {
for (size_t i = itemID.get_local(0); i < num_x_input ; i += itemID.get_local_range()[0]) {
const size_t local_index = i + (num_x_input * (j + (num_y_input * k)));
const size_t tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i + first_x_input_start, j+ first_y_input_start , k+ first_z_input_start );
if(((i + first_x_input_start) < (range_x +kernelSize_x-1)) && ((j + first_y_input_start) < (range_y +kernelSize_y-1)) && ((k + first_z_input_start) < (range_z +kernelSize_z-1)) ){
local_acc[local_index] = device_evaluator.coeff(tensor_index);
}
else local_acc[local_index]=0.0f;
}
}
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
// calculate the convolution
const size_t fitst_x_output_start =itemID.get_group(0)*(itemID.get_local_range()[0]); // x
const size_t fitst_y_output_start =itemID.get_group(1)*(itemID.get_local_range()[1]); // y
const size_t fitst_z_output_start =itemID.get_group(2)*(itemID.get_local_range()[2]); // z
if(itemID.get_global(0)< range_x && itemID.get_global(1)< range_y && itemID.get_global(2)< range_z){
CoeffReturnType result = static_cast<CoeffReturnType>(0);
for (size_t k = 0; k < kernelSize_z; k++) {
for (size_t j = 0; j < kernelSize_y; j++) {
for (size_t i = 0; i < kernelSize_x; i++) {
const size_t kernel_index =i + kernelSize_x * (j + kernelSize_y * k);
const size_t local_index = ((i+ itemID.get_local(0))+ num_x_input*((j+ itemID.get_local(1)) + num_y_input * (k+ itemID.get_local(2))));
result += (local_acc[local_index] * kernel_ptr[kernel_index]);
}
}
}
const size_t tensor_index = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p)
+indexMapper.mapCudaOutputKernelToTensorOutputOffset(itemID.get_local(0) + fitst_x_output_start, itemID.get_local(1) + fitst_y_output_start, itemID.get_local(2) + fitst_z_output_start );
buffer_ptr[tensor_index] = result;
}
itemID.barrier(cl::sycl::access::fence_space::local_space);
}
}
};
template<typename Indices, typename InputArgType, typename KernelArgType>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, const Eigen::SyclDevice>
{
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Dimensions>::value;
static const int NumKernelDims = internal::array_size<Indices>::value;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Dimensions KernelDimensions;
typedef const Eigen::SyclDevice Device;
enum {
IsAligned = TensorEvaluator<InputArgType, const Eigen::SyclDevice>::IsAligned & TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::IsAligned,
PacketAccess = false,
Layout = TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Layout,
CoordAccess = false, // to be implemented
RawAccess = false
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Eigen::SyclDevice& device)
: m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
{
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
const typename TensorEvaluator<InputArgType, const Eigen::SyclDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType, const Eigen::SyclDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
m_dimensions = m_inputImpl.dimensions();
for (int i = 0; i < NumKernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
m_dimensions[index] = result_dim;
}
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, const Eigen::SyclDevice>::type PacketReturnType;
typedef typename InputArgType::Scalar Scalar;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
preloadKernel();
m_inputImpl.evalSubExprsIfNeeded(NULL);
if (data) {
executeEval(data);
return false;
} else {
m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
executeEval(m_buf);
return true;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_inputImpl.cleanup();
if (m_buf) {
m_device.deallocate(m_buf);
m_buf = NULL;
}
if (m_local_kernel) {
m_device.deallocate((void*)m_kernel);
m_local_kernel = false;
}
m_kernel = NULL;
}
/// used by sycl in order to build the sycl buffer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const{return m_device;}
/// used by sycl in order to build the sycl buffer
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return m_buf; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
// Don't make a local copy of the kernel unless we have to (i.e. it's an
// expression that needs to be evaluated)
const Scalar* in_place = m_kernelImpl.data();
if (in_place) {
m_kernel = in_place;
m_local_kernel = false;
} else {
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
typedef TensorEvalToOp<const KernelArgType> EvalTo;
EvalTo evalToTmp(local, m_kernelArg);
const bool PacketAccess = internal::IsVectorizable<const Eigen::SyclDevice, KernelArgType>::value;
internal::TensorExecutor<const EvalTo, const Eigen::SyclDevice, PacketAccess>::run(evalToTmp, m_device);
m_kernel = local;
m_local_kernel = true;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void executeEval(Scalar* data) const {
typedef TensorEvaluator<InputArgType, const Eigen::SyclDevice> InputEvaluator;
typedef typename InputEvaluator::Dimensions InputDims;
typedef Eigen::TensorSycl::internal::FunctorExtractor<InputEvaluator> InputFunctorExpr;
// extract input functor list
InputFunctorExpr input_functors = Eigen::TensorSycl::internal::extractFunctors(m_inputImpl);
const unsigned long maxSharedMem = m_device.sharedMemPerBlock(); // sycl localmemory size
m_device.sycl_queue().submit([&](cl::sycl::handler &cgh) {
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write, cl::sycl::access::target::local> InputLocalAcc;
/// work-around for gcc 4.8 auto bug
typedef decltype(Eigen::TensorSycl::internal::createTupleOfAccessors<InputEvaluator>(cgh, m_inputImpl)) InputTupleType;
// create input tuple of accessors
InputTupleType tuple_of_accessors = Eigen::TensorSycl::internal::createTupleOfAccessors<InputEvaluator>(cgh, m_inputImpl);
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> OutputAccessorType;
OutputAccessorType out_res= m_device. template get_sycl_accessor<cl::sycl::access::mode::discard_write>(cgh, data);
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer> KernelAccessorType;
KernelAccessorType kernel_acc= m_device. template get_sycl_accessor<cl::sycl::access::mode::read>(cgh, m_kernel);
switch (NumKernelDims) {
case 1: {
const size_t numX = dimensions()[m_indices[0]];
const size_t numP = dimensions().TotalSize() / numX;
const size_t kernel_size = m_kernelImpl.dimensions().TotalSize();
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y;
m_device.parallel_for_setup(numX, numP, tileSize_x,tileSize_y,range_x,range_y, GRange_x, GRange_y );
const size_t shared_mem =(tileSize_x +kernel_size -1)*(tileSize_y);
assert(static_cast<unsigned long>(shared_mem) <= maxSharedMem);
auto global_range=cl::sycl::range<2>(GRange_x, GRange_y); // global range
auto local_range=cl::sycl::range<2>(tileSize_x, tileSize_y); // local range
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
const array<Index, 1> indices{m_indices[0]};
const array<Index, 1> kernel_dims{{m_kernelImpl.dimensions()[0]}};
internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
cgh.parallel_for(cl::sycl::nd_range<2>(global_range, local_range),
EigenConvolutionKernel1D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
indexMapper,kernel_acc, kernel_size, numX, numP, out_res, local_acc, input_functors, tuple_of_accessors));
break;
}
case 2: {
const size_t idxX =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
const size_t idxY =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
const size_t kernel_size_x = m_kernelImpl.dimensions()[idxX];
const size_t kernel_size_y = m_kernelImpl.dimensions()[idxY];
const size_t numX = dimensions()[m_indices[idxX]];
const size_t numY = dimensions()[m_indices[idxY]];
const size_t numP = dimensions().TotalSize() / (numX*numY);
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y, range_z, GRange_z, tileSize_z;
m_device.parallel_for_setup(numX, numY, numP, tileSize_x, tileSize_y, tileSize_z, range_x, range_y, range_z, GRange_x, GRange_y, GRange_z );
const size_t shared_mem =(tileSize_x +kernel_size_x -1)*(tileSize_y +kernel_size_y -1) * tileSize_z;
assert(static_cast<unsigned long>(shared_mem) <= maxSharedMem);
auto global_range=cl::sycl::range<3>(GRange_x, GRange_y, GRange_z); // global range
auto local_range=cl::sycl::range<3>(tileSize_x, tileSize_y, tileSize_z); // local range
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
const array<Index, 2> indices {{m_indices[idxX], m_indices[idxY]}};
const array<Index, 2> kernel_dims{{m_kernelImpl.dimensions()[idxX], m_kernelImpl.dimensions()[idxY]}};
internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
cgh.parallel_for(cl::sycl::nd_range<3>(global_range, local_range),
EigenConvolutionKernel2D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
indexMapper,kernel_acc, kernel_size_x, kernel_size_y, numX, numY, numP, out_res, local_acc, input_functors, tuple_of_accessors));
break;
}
case 3: {
const size_t idxX =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
const size_t idxY =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
const size_t idxZ =static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
const size_t kernel_size_x = m_kernelImpl.dimensions()[idxX];
const size_t kernel_size_y = m_kernelImpl.dimensions()[idxY];
const size_t kernel_size_z = m_kernelImpl.dimensions()[idxZ];
const size_t numX = dimensions()[m_indices[idxX]];
const size_t numY = dimensions()[m_indices[idxY]];
const size_t numZ = dimensions()[m_indices[idxZ]];
const size_t numP = dimensions().TotalSize() / (numX*numY*numZ);
const array<Index, 3> indices{{m_indices[idxX], m_indices[idxY], m_indices[idxZ]}};
const array<Index, 3> kernel_dims{{m_kernelImpl.dimensions()[idxX],m_kernelImpl.dimensions()[idxY], m_kernelImpl.dimensions()[idxZ]}};
internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
size_t range_x, GRange_x, tileSize_x, range_y, GRange_y, tileSize_y, range_z, GRange_z, tileSize_z;
m_device.parallel_for_setup(numX, numY, numZ, tileSize_x, tileSize_y, tileSize_z, range_x, range_y, range_z, GRange_x, GRange_y, GRange_z );
const size_t shared_mem =(tileSize_x +kernel_size_x -1)*(tileSize_y +kernel_size_y -1) * (tileSize_z +kernel_size_y -1);
assert(static_cast<unsigned long>(shared_mem) <= maxSharedMem);
auto global_range=cl::sycl::range<3>(GRange_x, GRange_y, GRange_z); // global range
auto local_range=cl::sycl::range<3>(tileSize_x, tileSize_y, tileSize_z); // local range
InputLocalAcc local_acc(cl::sycl::range<1>(shared_mem), cgh);
cgh.parallel_for(cl::sycl::nd_range<3>(global_range, local_range),
EigenConvolutionKernel3D<CoeffReturnType, Scalar, InputArgType, InputFunctorExpr, Index,
InputDims, KernelAccessorType, OutputAccessorType, InputLocalAcc, InputTupleType>(
indexMapper,kernel_acc, kernel_size_x, kernel_size_y, kernel_size_z, numX, numY,
numZ, numP, out_res, local_acc, input_functors, tuple_of_accessors));
break;
}
default: {
EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
}
}
});
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
eigen_assert(m_buf);
eigen_assert(index < m_dimensions.TotalSize());
return m_buf[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
{
eigen_assert(m_buf);
eigen_assert(index < m_dimensions.TotalSize());
return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
// model.
const double kernel_size = m_kernelImpl.dimensions().TotalSize();
// We ignore the use of fused multiply-add.
const double convolve_compute_cost =
TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
const double firstIndex_compute_cost =
NumDims *
(2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
TensorOpCost::DivCost<Index>());
return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
m_kernelImpl.costPerCoeff(vectorized) +
TensorOpCost(0, 0, convolve_compute_cost, vectorized,
PacketSize));
}
private:
// No assignment (copies are needed by the kernels)
TensorEvaluator& operator = (const TensorEvaluator&);
TensorEvaluator<InputArgType, const Eigen::SyclDevice> m_inputImpl;
KernelArgType m_kernelArg;
TensorEvaluator<KernelArgType, const Eigen::SyclDevice> m_kernelImpl;
Indices m_indices;
Dimensions m_dimensions;
Scalar* m_buf;
const Scalar* m_kernel;
bool m_local_kernel;
const Eigen::SyclDevice& m_device;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H

View File

@ -15,16 +15,16 @@
#if defined(EIGEN_USE_SYCL) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H)
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_SYCL_H
#include "TensorSyclLegacyPointer.h"
namespace Eigen {
#define ConvertToActualTypeSycl(Scalar, buf_acc) reinterpret_cast<typename cl::sycl::global_ptr<Scalar>::pointer_t>((&(*buf_acc.get_pointer())))
template <typename Scalar> class MemCopyFunctor {
template <typename Scalar, typename read_accessor, typename write_accessor> class MemCopyFunctor {
public:
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer> read_accessor;
typedef cl::sycl::accessor<uint8_t, 1, cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer> write_accessor;
MemCopyFunctor(read_accessor src_acc, write_accessor dst_acc, size_t rng, size_t i, size_t offset): m_src_acc(src_acc), m_dst_acc(dst_acc), m_rng(rng), m_i(i), m_offset(offset) {}
MemCopyFunctor(read_accessor src_acc, write_accessor dst_acc, size_t rng, size_t i, size_t offset)
: m_src_acc(src_acc), m_dst_acc(dst_acc), m_rng(rng), m_i(i), m_offset(offset) {}
void operator()(cl::sycl::nd_item<1> itemID) {
auto src_ptr = ConvertToActualTypeSycl(Scalar, m_src_acc);
@ -55,6 +55,7 @@ namespace Eigen {
};
EIGEN_STRONG_INLINE auto get_sycl_supported_devices()->decltype(cl::sycl::device::get_devices()){
auto devices = cl::sycl::device::get_devices();
std::vector<cl::sycl::device>::iterator it =devices.begin();
@ -77,11 +78,10 @@ struct QueueInterface {
bool exception_caught_ = false;
mutable std::mutex mutex_;
/// std::map is the container used to make sure that we create only one buffer
/// per pointer. The lifespan of the buffer now depends on the lifespan of SyclDevice.
/// If a non-read-only pointer is needed to be accessed on the host we should manually deallocate it.
mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
//mutable std::map<const uint8_t *, cl::sycl::buffer<uint8_t, 1>> buffer_map;
/// sycl queue
mutable cl::sycl::queue m_queue;
/// creating device by using cl::sycl::selector or cl::sycl::device both are the same and can be captured through dev_Selector typename
@ -119,49 +119,42 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
/// use this pointer as a key in our buffer_map and we make sure that we dedicate only one buffer only for this pointer.
/// The device pointer would be deleted by calling deallocate function.
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
auto buf = cl::sycl::buffer<uint8_t,1>(cl::sycl::range<1>(num_bytes));
auto ptr =buf.get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>().get_pointer();
buf.set_final_data(nullptr);
std::lock_guard<std::mutex> lock(mutex_);
buffer_map.insert(std::pair<const uint8_t *, cl::sycl::buffer<uint8_t, 1>>(static_cast<const uint8_t*>(ptr),buf));
return static_cast<void*>(ptr);
return codeplay::legacy::malloc(num_bytes);
}
/// This is used to deallocate the device pointer. p is used as a key inside
/// the map to find the device buffer and delete it.
EIGEN_STRONG_INLINE void deallocate(void *p) const {
std::lock_guard<std::mutex> lock(mutex_);
auto it = buffer_map.find(static_cast<const uint8_t*>(p));
if (it != buffer_map.end()) {
auto num_bytes =it->second.get_size();
buffer_map.erase(it);
// Temporary solution for memory leak in computecpp. It will be fixed in the next computecpp version
std::allocator<uint8_t> a1; // Default allocator for buffer<uint8_t,1>
a1.deallocate(static_cast<uint8_t*>(p), num_bytes);
}
return codeplay::legacy::free(p);
}
EIGEN_STRONG_INLINE void deallocate_all() const {
std::lock_guard<std::mutex> lock(mutex_);
buffer_map.clear();
codeplay::legacy::clear();
}
EIGEN_STRONG_INLINE std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator find_buffer(const void* ptr) const {
EIGEN_STRONG_INLINE codeplay::legacy::PointerMapper& pointerMapper() const {
std::lock_guard<std::mutex> lock(mutex_);
auto it1 = buffer_map.find(static_cast<const uint8_t*>(ptr));
if (it1 != buffer_map.end()){
return it1;
}
else{
for(std::map<const uint8_t *, cl::sycl::buffer<uint8_t,1>>::iterator it=buffer_map.begin(); it!=buffer_map.end(); ++it){
auto size = it->second.get_size();
if((it->first < (static_cast<const uint8_t*>(ptr))) && ((static_cast<const uint8_t*>(ptr)) < (it->first + size)) ) return it;
}
}
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling allocate function in SyclDevice"<< std::endl;
abort();
return codeplay::legacy::getPointerMapper();
}
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t,1> get_buffer(void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return pointerMapper().get_buffer(pointerMapper().get_buffer_id(ptr));
}
EIGEN_STRONG_INLINE size_t get_buffer_offset(void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return pointerMapper().get_offset(ptr);
}
/*EIGEN_STRONG_INLINE void* get_buffer_id(void* ptr) const {
std::lock_guard<std::mutex> lock(mutex_);
return static_cast<void*>(pointerMapper().get_buffer_id(ptr));
}*/
// This function checks if the runtime recorded an error for the
// underlying stream device.
EIGEN_STRONG_INLINE bool ok() const {
@ -172,7 +165,7 @@ m_queue(cl::sycl::queue(s, [&](cl::sycl::exception_list l) {
}
// destructor
~QueueInterface() { buffer_map.clear(); }
~QueueInterface() { codeplay::legacy::clear(); }
};
struct SyclDevice {
@ -190,14 +183,20 @@ struct SyclDevice {
}
/// Accessing the created sycl device buffer for the device pointer
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1>& get_sycl_buffer(const void * ptr) const {
return m_queue_stream->find_buffer(ptr)->second;
EIGEN_STRONG_INLINE cl::sycl::buffer<uint8_t, 1> get_sycl_buffer(const void * ptr) const {
return m_queue_stream->get_buffer(const_cast<void*>(ptr));
}
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index n, Index &tileSize, Index &rng, Index &GRange) const {
tileSize =static_cast<Index>(sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2);
tileSize =static_cast<Index>(sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>());
auto s= sycl_queue().get_device().template get_info<cl::sycl::info::device::vendor>();
std::transform(s.begin(), s.end(), s.begin(), ::tolower);
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
tileSize=std::min(static_cast<size_t>(256), static_cast<size_t>(tileSize));
}
rng = n;
if (rng==0) rng=static_cast<Index>(1);
GRange=rng;
@ -207,6 +206,76 @@ struct SyclDevice {
if (xMode != 0) GRange += static_cast<Index>(tileSize - xMode);
}
}
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1, Index &tileSize0, Index &tileSize1, Index &rng0, Index &rng1, Index &GRange0, Index &GRange1) const {
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
max_workgroup_Size=std::min(static_cast<size_t>(256), static_cast<size_t>(max_workgroup_Size));
}
size_t pow_of_2 = static_cast<size_t>(std::log2(max_workgroup_Size));
tileSize1 =static_cast<Index>(std::pow(2, static_cast<size_t>(pow_of_2/2)));
rng1=dim1;
if (rng1==0 ) rng1=static_cast<Index>(1);
GRange1=rng1;
if (tileSize1>GRange1) tileSize1=GRange1;
else if(GRange1>tileSize1){
Index xMode = static_cast<Index>(GRange1 % tileSize1);
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
}
tileSize0 = static_cast<Index>(max_workgroup_Size/tileSize1);
rng0 = dim0;
if (rng0==0 ) rng0=static_cast<Index>(1);
GRange0=rng0;
if (tileSize0>GRange0) tileSize0=GRange0;
else if(GRange0>tileSize0){
Index xMode = static_cast<Index>(GRange0 % tileSize0);
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
}
}
/// This is used to prepare the number of threads and also the number of threads per block for sycl kernels
template<typename Index>
EIGEN_STRONG_INLINE void parallel_for_setup(Index dim0, Index dim1,Index dim2, Index &tileSize0, Index &tileSize1, Index &tileSize2, Index &rng0, Index &rng1, Index &rng2, Index &GRange0, Index &GRange1, Index &GRange2) const {
Index max_workgroup_Size = static_cast<Index>(maxSyclThreadsPerBlock());
if(sycl_queue().get_device().is_cpu()){ // intel doesnot allow to use max workgroup size
max_workgroup_Size=std::min(static_cast<size_t>(256), static_cast<size_t>(max_workgroup_Size));
}
size_t pow_of_2 = static_cast<size_t>(std::log2(max_workgroup_Size));
tileSize2 =static_cast<Index>(std::pow(2, static_cast<size_t>(pow_of_2/3)));
rng2=dim2;
if (rng2==0 ) rng1=static_cast<Index>(1);
GRange2=rng2;
if (tileSize2>GRange2) tileSize2=GRange2;
else if(GRange2>tileSize2){
Index xMode = static_cast<Index>(GRange2 % tileSize2);
if (xMode != 0) GRange2 += static_cast<Index>(tileSize2 - xMode);
}
pow_of_2 = static_cast<size_t>(std::log2(static_cast<Index>(max_workgroup_Size/tileSize2)));
tileSize1 =static_cast<Index>(std::pow(2, static_cast<size_t>(pow_of_2/2)));
rng1=dim1;
if (rng1==0 ) rng1=static_cast<Index>(1);
GRange1=rng1;
if (tileSize1>GRange1) tileSize1=GRange1;
else if(GRange1>tileSize1){
Index xMode = static_cast<Index>(GRange1 % tileSize1);
if (xMode != 0) GRange1 += static_cast<Index>(tileSize1 - xMode);
}
tileSize0 = static_cast<Index>(max_workgroup_Size/(tileSize1*tileSize2));
rng0 = dim0;
if (rng0==0 ) rng0=static_cast<Index>(1);
GRange0=rng0;
if (tileSize0>GRange0) tileSize0=GRange0;
else if(GRange0>tileSize0){
Index xMode = static_cast<Index>(GRange0 % tileSize0);
if (xMode != 0) GRange0 += static_cast<Index>(tileSize0 - xMode);
}
}
/// allocate device memory
EIGEN_STRONG_INLINE void *allocate(size_t num_bytes) const {
return m_queue_stream->allocate(num_bytes);
@ -220,21 +289,21 @@ struct SyclDevice {
EIGEN_STRONG_INLINE bool isDeviceSuitable() const { return true; }
/// the memcpy function
template<typename T> EIGEN_STRONG_INLINE void memcpy(void *dst, const T *src, size_t n) const {
auto it1 = m_queue_stream->find_buffer((void*)src);
auto it2 = m_queue_stream->find_buffer(dst);
auto offset= (static_cast<const uint8_t*>(static_cast<const void*>(src))) - it1->first;
auto i= (static_cast<const uint8_t*>(dst)) - it2->first;
offset/=sizeof(T);
i/=sizeof(T);
template<typename Index> EIGEN_STRONG_INLINE void memcpy(void *dst, const Index *src, size_t n) const {
auto offset= m_queue_stream->get_buffer_offset((void*)src);
auto i= m_queue_stream->get_buffer_offset(dst);
offset/=sizeof(Index);
i/=sizeof(Index);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto src_acc =it1->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto dst_acc =it2->second.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<T>(src_acc, dst_acc, rng, i, offset));
auto src_acc =get_sycl_accessor<cl::sycl::access::mode::read>(cgh, src);
auto dst_acc =get_sycl_accessor<cl::sycl::access::mode::write>(cgh, dst);
typedef decltype(src_acc) read_accessor;
typedef decltype(dst_acc) write_accessor;
cgh.parallel_for(cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, i, offset));
});
asynchronousExec();
synchronize();
}
/// The memcpyHostToDevice is used to copy the device only pointer to a host pointer. Using the device
@ -246,26 +315,28 @@ struct SyclDevice {
auto host_acc= get_sycl_buffer(dst). template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::host_buffer>();
::memcpy(host_acc.get_pointer(), src, n);
}
/// The memcpyDeviceToHost is used to copy the data from host to device. Here, in order to avoid double copying the data. We create a sycl
/// buffer with map_allocator for the destination pointer with a discard_write accessor on it. The lifespan of the buffer is bound to the
/// lifespan of the memcpyDeviceToHost function. We create a kernel to copy the data, from the device- only source buffer to the destination
/// buffer with map_allocator on the gpu in parallel. At the end of the function call the destination buffer would be destroyed and the data
/// would be available on the dst pointer using fast copy technique (map_allocator). In this case we can make sure that we copy the data back
/// to the cpu only once per function call.
template<typename T> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const T *src, size_t n) const {
auto it = m_queue_stream->find_buffer(src);
auto offset =static_cast<const uint8_t*>(static_cast<const void*>(src))- it->first;
offset/=sizeof(T);
template<typename Index> EIGEN_STRONG_INLINE void memcpyDeviceToHost(void *dst, const Index *src, size_t n) const {
auto offset =m_queue_stream->get_buffer_offset((void *)src);
offset/=sizeof(Index);
size_t rng, GRange, tileSize;
parallel_for_setup(n/sizeof(T), tileSize, rng, GRange);
parallel_for_setup(n/sizeof(Index), tileSize, rng, GRange);
// Assuming that the dst is the start of the destination pointer
auto dest_buf = cl::sycl::buffer<uint8_t, 1, cl::sycl::map_allocator<uint8_t> >(static_cast<uint8_t*>(dst), cl::sycl::range<1>(n));
sycl_queue().submit([&](cl::sycl::handler &cgh) {
auto src_acc= it->second.template get_access<cl::sycl::access::mode::read, cl::sycl::access::target::global_buffer>(cgh);
auto src_acc= get_sycl_accessor<cl::sycl::access::mode::read>(cgh, src);
auto dst_acc =dest_buf.template get_access<cl::sycl::access::mode::discard_write, cl::sycl::access::target::global_buffer>(cgh);
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<T>(src_acc, dst_acc, rng, 0, offset));
typedef decltype(src_acc) read_accessor;
typedef decltype(dst_acc) write_accessor;
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)), MemCopyFunctor<Index, read_accessor, write_accessor>(src_acc, dst_acc, rng, 0, offset));
});
asynchronousExec();
synchronize();
}
/// returning the sycl queue
EIGEN_STRONG_INLINE cl::sycl::queue& sycl_queue() const { return m_queue_stream->m_queue;}
@ -273,8 +344,9 @@ struct SyclDevice {
EIGEN_STRONG_INLINE void memset(void *data, int c, size_t n) const {
size_t rng, GRange, tileSize;
parallel_for_setup(n, tileSize, rng, GRange);
sycl_queue().submit(memsetCghFunctor(get_sycl_buffer(static_cast<uint8_t*>(static_cast<void*>(data))),rng, GRange, tileSize, c ));
asynchronousExec();
auto buf =get_sycl_buffer(static_cast<uint8_t*>(static_cast<void*>(data)));
sycl_queue().submit(memsetCghFunctor(buf,rng, GRange, tileSize, c ));
synchronize();
}
struct memsetCghFunctor{
@ -300,6 +372,24 @@ struct SyclDevice {
// there is no l3 cache on cuda devices.
return firstLevelCacheSize();
}
EIGEN_STRONG_INLINE unsigned long getNumSyclMultiProcessors() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_compute_units>();
// return stream_->deviceProperties().multiProcessorCount;
}
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerBlock() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
// return stream_->deviceProperties().maxThreadsPerBlock;
}
EIGEN_STRONG_INLINE unsigned long maxSyclThreadsPerMultiProcessor() const {
// OpenCL doesnot have such concept
return 2;//sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>();
// return stream_->deviceProperties().maxThreadsPerMultiProcessor;
}
EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
return sycl_queue().get_device(). template get_info<cl::sycl::info::device::local_mem_size>();
// return stream_->deviceProperties().sharedMemPerBlock;
}
/// No need for sycl it should act the same as CPU version
EIGEN_STRONG_INLINE int majorDeviceVersion() const { return 1; }
@ -308,7 +398,7 @@ struct SyclDevice {
}
EIGEN_STRONG_INLINE void asynchronousExec() const {
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
///FIXEDME:: currently there is a race condition regarding the asynch scheduler.
//sycl_queue().throw_asynchronous();// does not pass. Temporarily disabled
sycl_queue().wait_and_throw(); //pass

View File

@ -143,12 +143,12 @@ struct TensorEvaluator<const TensorForcedEvalOp<ArgType>, Device>
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
CoeffReturnType* data() const { return m_buffer; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const { return m_buffer; }
/// required by sycl in order to extract the sycl accessor
const TensorEvaluator<ArgType, Device>& impl() { return m_impl; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() { return m_impl; }
/// used by sycl in order to build the sycl buffer
const Device& device() const{return m_device;}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const{return m_device;}
private:
TensorEvaluator<ArgType, Device> m_impl;
const ArgType m_op;

View File

@ -736,22 +736,12 @@ struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices,
for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
if(m_strides[i]>0){
#ifndef __SYCL_DEVICE_ONLY__
startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
#else
startIndicesClamped[i] = cl::sycl::clamp(static_cast<Index>(op.startIndices()[i]), static_cast<Index>(0), static_cast<Index>(m_impl.dimensions()[i]));
stopIndicesClamped[i] = cl::sycl::clamp(static_cast<Index>(op.stopIndices()[i]), static_cast<Index>(0), static_cast<Index>(m_impl.dimensions()[i]));
#endif
}else{
/* implies m_strides[i]<0 by assert */
#ifndef __SYCL_DEVICE_ONLY__
startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
#else
startIndicesClamped[i] = cl::sycl::clamp(static_cast<Index>(op.startIndices()[i]), static_cast<Index>(-1), static_cast<Index>(m_impl.dimensions()[i] - 1));
stopIndicesClamped[i] = cl::sycl::clamp(static_cast<Index>(op.stopIndices()[i]), static_cast<Index>(-1), static_cast<Index>(m_impl.dimensions()[i] - 1));
#endif
}
m_startIndices[i] = startIndicesClamped[i];
}
@ -867,7 +857,11 @@ struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices,
}
static EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
#ifndef __SYCL_DEVICE_ONLY__
return numext::maxi(min, numext::mini(max,value));
#else
return cl::sycl::clamp(value, min, max);
#endif
}
array<Index, NumDims> m_outputStrides;

View File

@ -108,7 +108,7 @@ struct FullReducer<Self, Op, const Eigen::SyclDevice, Vectorizable> {
// Dims dims= self.xprDims();
//Op functor = reducer;
dev.sycl_queue().submit([&](cl::sycl::handler &cgh) {
// this is a work around for gcc bug
// this is a workaround for gcc 4.8 bug
typedef decltype(TensorSycl::internal::createTupleOfAccessors(cgh, self.impl())) TupleType;
// create a tuple of accessors from Evaluator
TupleType tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
@ -148,7 +148,7 @@ struct InnerReducer<Self, Op, const Eigen::SyclDevice> {
/// recursively apply reduction on it in order to reduce the whole.
dev.parallel_for_setup(num_coeffs_to_preserve, tileSize, range, GRange);
dev.sycl_queue().submit([&](cl::sycl::handler &cgh) {
// this is work around for gcc bug.
// this is workaround for gcc 4.8 bug.
typedef decltype(TensorSycl::internal::createTupleOfAccessors(cgh, self.impl())) Tuple_of_Acc;
// create a tuple of accessors from Evaluator
Tuple_of_Acc tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());

View File

@ -121,11 +121,7 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
{
m_dimensions = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
#ifndef __SYCL_DEVICE_ONLY__
m_dimensions[i] = ceilf(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
#else
m_dimensions[i] = cl::sycl::ceil(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
#endif
m_dimensions[i] =Eigen::numext::ceil(static_cast<float>(m_dimensions[i]) / op.strides()[i]);
}
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
@ -233,8 +229,6 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
/// required by sycl in order to extract the accessor
Strides functor() const { return m_strides; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
{
@ -299,10 +293,9 @@ struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
}
/// required by sycl in order to extract the accessor
const TensorEvaluator<ArgType, Device>& impl() const { return this->m_impl; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return this->m_impl; }
/// required by sycl in order to extract the accessor
Strides functor() const { return this->m_strides; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Strides functor() const { return this->m_strides; }
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)

View File

@ -80,6 +80,9 @@ template<typename T> struct GetType<false, T>{
/// this is used for extracting tensor reduction
#include "TensorReductionSycl.h"
/// this is used for extracting tensor convolution
#include "TensorConvolutionSycl.h"
// kernel execution using fusion
#include "TensorSyclRun.h"
//sycl functors

View File

@ -97,7 +97,7 @@ template <typename Expr>\
struct ConvertToDeviceExpression<CVQual ExprNode<Expr> > \
: DeviceConvertor<ExprNode, Res, Expr>{};
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorReductionOp
/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorForcedEvalOp
#define KERNELBROKERCONVERTFORCEDEVAL(CVQual)\
template <typename Expr>\
struct ConvertToDeviceExpression<CVQual TensorForcedEvalOp<Expr> > {\

View File

@ -35,6 +35,8 @@
namespace Eigen {
namespace TensorSycl {
namespace internal {
#define RETURN_CPP11(expr) ->decltype(expr) {return expr;}
/// \struct ExtractAccessor: Extract Accessor Class is used to extract the
/// accessor from a buffer.
/// Depending on the type of the leaf node we can get a read accessor or a
@ -44,22 +46,16 @@ struct ExtractAccessor;
struct AccessorConstructor{
template<typename Arg> static inline auto getTuple(cl::sycl::handler& cgh, const Arg& eval)
-> decltype(ExtractAccessor<Arg>::getTuple(cgh, eval)) {
return ExtractAccessor<Arg>::getTuple(cgh, eval);
}
RETURN_CPP11(ExtractAccessor<Arg>::getTuple(cgh, eval))
template<typename Arg1, typename Arg2> static inline auto getTuple(cl::sycl::handler& cgh, const Arg1& eval1, const Arg2& eval2)
-> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2))) {
return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2));
}
RETURN_CPP11(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1), ExtractAccessor<Arg2>::getTuple(cgh, eval2)))
template<typename Arg1, typename Arg2, typename Arg3> static inline auto getTuple(cl::sycl::handler& cgh, const Arg1& eval1 , const Arg2& eval2 , const Arg3& eval3)
-> decltype(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)))) {
return utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3)));
}
RETURN_CPP11(utility::tuple::append(ExtractAccessor<Arg1>::getTuple(cgh, eval1),utility::tuple::append(ExtractAccessor<Arg2>::getTuple(cgh, eval2), ExtractAccessor<Arg3>::getTuple(cgh, eval3))))
template< cl::sycl::access::mode AcM, typename Arg> static inline auto getAccessor(cl::sycl::handler& cgh, const Arg& eval)
-> decltype(utility::tuple::make_tuple( eval.device().template get_sycl_accessor<AcM>(cgh,eval.data()))){
return utility::tuple::make_tuple(eval.device().template get_sycl_accessor<AcM>(cgh,eval.data()));
}
RETURN_CPP11(utility::tuple::make_tuple(eval.device().template get_sycl_accessor<AcM>(cgh,eval.data())))
};
/// specialisation of the \ref ExtractAccessor struct when the node type is
@ -68,9 +64,7 @@ struct AccessorConstructor{
template <template<class, class> class UnaryCategory, typename OP, typename RHSExpr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual UnaryCategory<OP, RHSExpr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual UnaryCategory<OP, RHSExpr>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){\
return AccessorConstructor::getTuple(cgh, eval.impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.impl()))\
};
SYCLUNARYCATEGORYEXTACC(const)
@ -83,9 +77,7 @@ SYCLUNARYCATEGORYEXTACC()
template <template<class, class, class> class BinaryCategory, typename OP, typename LHSExpr, typename RHSExpr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual BinaryCategory<OP, LHSExpr, RHSExpr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual BinaryCategory<OP, LHSExpr, RHSExpr>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){\
return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl()))\
};
SYCLBINARYCATEGORYEXTACC(const)
@ -98,9 +90,7 @@ SYCLBINARYCATEGORYEXTACC()
template <template<class, class, class, class> class TernaryCategory, typename OP, typename Arg1Expr, typename Arg2Expr, typename Arg3Expr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TernaryCategory<OP, Arg1Expr, Arg2Expr, Arg3Expr>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl())){\
return AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.arg1Impl(), eval.arg2Impl(), eval.arg3Impl()))\
};
SYCLTERNARYCATEGORYEXTACC(const)
@ -114,9 +104,7 @@ SYCLTERNARYCATEGORYEXTACC()
template <typename IfExpr, typename ThenExpr, typename ElseExpr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorSelectOp<IfExpr, ThenExpr, ElseExpr>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl())){\
return AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.cond_impl(), eval.then_impl(), eval.else_impl()))\
};
SYCLSELECTOPEXTACC(const)
@ -128,9 +116,7 @@ SYCLSELECTOPEXTACC()
template <typename LHSExpr, typename RHSExpr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorAssignOp<LHSExpr, RHSExpr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorAssignOp<LHSExpr, RHSExpr>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl())){\
return AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.left_impl(), eval.right_impl()))\
};
SYCLTENSORASSIGNOPEXTACC(const)
@ -142,9 +128,7 @@ struct ExtractAccessor<TensorEvaluator<CVQual TensorAssignOp<LHSExpr, RHSExpr>,
template <typename PlainObjectType, int Options_, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<CVQual TensorMap<PlainObjectType, Options_>, Dev>& eval)\
-> decltype(AccessorConstructor::template getAccessor<ACCType>(cgh, eval)){\
return AccessorConstructor::template getAccessor<ACCType>(cgh, eval);\
}\
RETURN_CPP11(AccessorConstructor::template getAccessor<ACCType>(cgh, eval))\
};
TENSORMAPEXPR(const, cl::sycl::access::mode::read)
@ -156,9 +140,7 @@ TENSORMAPEXPR(, cl::sycl::access::mode::read_write)
template <typename Expr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorForcedEvalOp<Expr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorForcedEvalOp<Expr>, Dev>& eval)\
-> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){\
return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);\
}\
RETURN_CPP11(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval))\
};
SYCLFORCEDEVALEXTACC(const)
@ -171,9 +153,7 @@ SYCLFORCEDEVALEXTACC()
template <typename Expr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorEvalToOp<Expr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh,const TensorEvaluator<CVQual TensorEvalToOp<Expr>, Dev>& eval)\
-> decltype(utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()))){\
return utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl()));\
}\
RETURN_CPP11(utility::tuple::append(AccessorConstructor::template getAccessor<cl::sycl::access::mode::write>(cgh, eval), AccessorConstructor::getTuple(cgh, eval.impl())))\
};
SYCLEVALTOEXTACC(const)
@ -185,23 +165,19 @@ SYCLEVALTOEXTACC()
template <typename OP, typename Dim, typename Expr, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorReductionOp<OP, Dim, Expr>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorReductionOp<OP, Dim, Expr>, Dev>& eval)\
-> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){\
return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);\
}\
RETURN_CPP11(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval))\
};
SYCLREDUCTIONEXTACC(const)
SYCLREDUCTIONEXTACC()
#undef SYCLREDUCTIONEXTACC
/// specialisation of the \ref ExtractAccessor struct when the node type is TensorReductionOp
/// specialisation of the \ref ExtractAccessor struct when the node type is TensorContractionOp and TensorConvolutionOp
#define SYCLCONTRACTIONCONVOLUTIONEXTACC(CVQual, ExprNode)\
template<typename Indices, typename LhsXprType, typename RhsXprType, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual ExprNode<Indices, LhsXprType, RhsXprType>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual ExprNode<Indices, LhsXprType, RhsXprType>, Dev>& eval)\
-> decltype(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval)){\
return AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval);\
}\
RETURN_CPP11(AccessorConstructor::template getAccessor<cl::sycl::access::mode::read>(cgh, eval))\
};
SYCLCONTRACTIONCONVOLUTIONEXTACC(const,TensorContractionOp)
@ -212,27 +188,24 @@ SYCLCONTRACTIONCONVOLUTIONEXTACC(,TensorConvolutionOp)
/// specialisation of the \ref ExtractAccessor struct when the node type is
/// const TensorSlicingOp. This is a special case where there is no OP
/// const TensorSlicingOp.
#define SYCLSLICEOPEXTACC(CVQual)\
template <typename StartIndices, typename Sizes, typename XprType, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorSlicingOp<StartIndices, Sizes, XprType>, Dev> > {\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorSlicingOp<StartIndices, Sizes, XprType>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){\
return AccessorConstructor::getTuple(cgh, eval.impl());\
}\
RETURN_CPP11( AccessorConstructor::getTuple(cgh, eval.impl()))\
};
SYCLSLICEOPEXTACC(const)
SYCLSLICEOPEXTACC()
#undef SYCLSLICEOPEXTACC
// specialisation of the \ref ExtractAccessor struct when the node type is
/// const TensorStridingSlicingOp.
#define SYCLSLICESTRIDEOPEXTACC(CVQual)\
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Dev> >{\
static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Dev>& eval)\
-> decltype(AccessorConstructor::getTuple(cgh, eval.impl())){\
return AccessorConstructor::getTuple(cgh, eval.impl());\
}\
RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.impl()))\
};
SYCLSLICESTRIDEOPEXTACC(const)

View File

@ -0,0 +1,244 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Ruyman Reyes Codeplay Software Ltd
// Mehdi Goli Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************
* TensorSyclLegacyPointer.h
*
* \brief:
* Interface for SYCL buffers to behave as a non-deferrenciable pointer
* This can be found in Codeplay's ComputeCpp SDK : legacy_pointer.h
*
**************************************************************************/
namespace codeplay {
namespace legacy {
/**
* PointerMapper
* Associates fake pointers with buffers.
*
*/
class PointerMapper {
public:
/* pointer information definitions
*/
static const unsigned long ADDRESS_BITS = sizeof(void *) * 8;
static const unsigned long BUFFER_ID_BITSIZE = 16u;
static const unsigned long MAX_NUMBER_BUFFERS = (1UL << BUFFER_ID_BITSIZE)-1;
static const unsigned long MAX_OFFSET = (1UL << (ADDRESS_BITS - BUFFER_ID_BITSIZE))-1;
using base_ptr_t = uintptr_t;
/* Fake Pointers are constructed using an integer indexing plus
* the offset:
*
* |== MAX_BUFFERS ==|======== MAX_OFFSET ========|
* | Buffer Id | Offset in buffer |
* |=================|============================|
*/
struct legacy_pointer_t {
/* Type for the pointers
*/
base_ptr_t _contents;
/** Conversions from legacy_pointer_t to
* the void * should just reinterpret_cast the integer
* number
*/
operator void *() const { return reinterpret_cast<void *>(_contents); }
/**
* Convert back to the integer number.
*/
operator base_ptr_t() const { return _contents; }
/**
* Converts a void * into a legacy pointer structure.
* Note that this will only work if the void * was
* already a legacy_pointer_t, but we have no way of
* checking
*/
legacy_pointer_t(void *ptr)
: _contents(reinterpret_cast<base_ptr_t>(ptr)){};
/**
* Creates a legacy_pointer_t from the given integer
* number
*/
legacy_pointer_t(base_ptr_t u) : _contents(u){};
};
/* Whether if a pointer is null or not.
*
* A pointer is nullptr if the buffer id is 0,
* i.e the first BUFFER_ID_BITSIZE are zero
*/
static inline bool is_nullptr(legacy_pointer_t ptr) {
return ((MAX_OFFSET & ptr) == ptr);
}
/* Base nullptr
*/
const legacy_pointer_t null_legacy_ptr = nullptr;
/* Data type to create buffer of byte-size elements
*/
using buffer_data_type = uint8_t;
/* basic type for all buffers
*/
using buffer_t = cl::sycl::buffer<buffer_data_type, 1>;
/* id of a buffer in the map
*/
typedef short buffer_id;
/* get_buffer_id
*/
inline buffer_id get_buffer_id(legacy_pointer_t ptr) const {
return ptr >> (ADDRESS_BITS - BUFFER_ID_BITSIZE);
}
/*
* get_buffer_offset
*/
inline off_t get_offset(legacy_pointer_t ptr) const {
return ptr & MAX_OFFSET;;
}
/**
* Constructs the PointerMapper structure.
*/
PointerMapper()
: __pointer_list{}, rng_(std::random_device()()), uni_(1, 256){};
/**
* PointerMapper cannot be copied or moved
*/
PointerMapper(const PointerMapper &) = delete;
/**
* empty the pointer list
*/
inline void clear() {
__pointer_list.clear();
}
/* generate_id
* Generates a unique id for a buffer.
*/
buffer_id generate_id() {
// Limit the number of attempts to half the combinations
// just to avoid an infinite loop
int numberOfAttempts = 1ul << (BUFFER_ID_BITSIZE / 2);
buffer_id bId;
do {
bId = uni_(rng_);
} while (__pointer_list.find(bId) != __pointer_list.end() &&
numberOfAttempts--);
return bId;
}
/* add_pointer.
* Adds a pointer to the map and returns the fake pointer id.
* This will be the bufferId on the most significant bytes and 0 elsewhere.
*/
legacy_pointer_t add_pointer(buffer_t &&b) {
auto nextNumber = __pointer_list.size();
buffer_id bId = generate_id();
__pointer_list.emplace(bId, b);
if (nextNumber > MAX_NUMBER_BUFFERS) {
return null_legacy_ptr;
}
base_ptr_t retVal = bId;
retVal <<= (ADDRESS_BITS - BUFFER_ID_BITSIZE);
return retVal;
}
/* get_buffer.
* Returns a buffer from the map using the buffer id
*/
buffer_t get_buffer(buffer_id bId) const {
auto it = __pointer_list.find(bId);
if (it != __pointer_list.end())
return it->second;
std::cerr << "No sycl buffer found. Make sure that you have allocated memory for your buffer by calling malloc-ed function."<< std::endl;
abort();
}
/* remove_pointer.
* Removes the given pointer from the map.
*/
void remove_pointer(void *ptr) {
buffer_id bId = this->get_buffer_id(ptr);
__pointer_list.erase(bId);
}
/* count.
* Return the number of active pointers (i.e, pointers that
* have been malloc but not freed).
*/
size_t count() const { return __pointer_list.size(); }
private:
/* Maps the buffer id numbers to the actual buffer
* instances.
*/
std::map<buffer_id, buffer_t> __pointer_list;
/* Random number generator for the buffer ids
*/
std::mt19937 rng_;
/* Random-number engine
*/
std::uniform_int_distribution<short> uni_;
};
/**
* Singleton interface to the pointer mapper to implement
* the generic malloc/free C interface without extra
* parameters.
*/
inline PointerMapper &getPointerMapper() {
static PointerMapper thePointerMapper;
return thePointerMapper;
}
/**
* Malloc-like interface to the pointer-mapper.
* Given a size, creates a byte-typed buffer and returns a
* fake pointer to keep track of it.
*/
inline void *malloc(size_t size) {
// Create a generic buffer of the given size
auto thePointer = getPointerMapper().add_pointer(
PointerMapper::buffer_t(cl::sycl::range<1>{size}));
// Store the buffer on the global list
return static_cast<void *>(thePointer);
}
/**
* Free-like interface to the pointer mapper.
* Given a fake-pointer created with the legacy-pointer malloc,
* destroys the buffer and remove it from the list.
*/
inline void free(void *ptr) { getPointerMapper().remove_pointer(ptr); }
/**
*clear the pointer list
*/
inline void clear() {
getPointerMapper().clear();
}
} // legacy
} // codeplay

View File

@ -49,7 +49,7 @@ template<typename Expr, typename FunctorExpr, typename TupleType > struct ExecEx
/// based expression tree;
/// creates the expression tree for the device with accessor to buffers;
/// construct the kernel and submit it to the sycl queue.
/// std::array does not have TotalSize. So I have to get the size throgh template specialisation.
/// std::array does not have TotalSize. So I have to get the size through template specialisation.
template<typename Index, typename Dimensions> struct DimensionSize{
static Index getDimSize(const Dimensions& dim){
return dim.TotalSize();

View File

@ -153,6 +153,7 @@ if(EIGEN_TEST_CXX11)
ei_add_test_sycl(cxx11_tensor_contract_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_concatenation_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_reverse_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_convolution_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_striding_sycl "-std=c++11")
endif(EIGEN_TEST_SYCL)
# It should be safe to always run these tests as there is some fallback code for

View File

@ -28,6 +28,7 @@ using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
static const float error_threshold =1e-4f;
typedef Tensor<float, 1>::DimensionPair DimPair;
template<int DataLayout, typename Device>
void test_sycl_contraction(const Device& sycl_device, int m_size, int k_size, int n_size)
@ -70,10 +71,10 @@ void test_sycl_contraction(const Device& sycl_device, int m_size, int k_size, in
t_result = t_left.contract(t_right, dims);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < 1e-4f) {
if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
continue;
}
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
@ -132,10 +133,10 @@ void test_TF(const Device& sycl_device)
t_result = t_left.contract(t_right, dims);
for (DenseIndex i = 0; i < t_result.size(); i++) {
if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < 1e-4f) {
if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
continue;
}
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
@ -187,8 +188,8 @@ void test_scalar(const Device& sycl_device, int m_size, int k_size, int n_size)
t_result = t_left.contract(t_right, dims);
if (static_cast<float>(fabs(t_result() - t_result_gpu())) > 1e-4f &&
!Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
if (static_cast<float>(fabs(t_result() - t_result_gpu())) > error_threshold &&
!Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) {
std::cout << "mismatch detected: " << t_result()
<< " vs " << t_result_gpu() << std::endl;
assert(false);

View File

@ -0,0 +1,469 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_convolution_sycl
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_SYCL
#include <iostream>
#include <chrono>
#include <ctime>
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
#include <iomanip>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
static const float error_threshold =1e-4f;
template <typename DataType, int DataLayout, typename IndexType>
static void test_larg_expr1D(const Eigen::SyclDevice& sycl_device)
{
int indim0 =53;
int indim1= 55;
int indim2= 51;
int outdim0=50;
int outdim1=55;
int outdim2=51;
Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
Eigen::array<IndexType, 1> kernel_dims = {{4}};
Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
Eigen::array<IndexType, 1> dims3{{0}};
input.setRandom();
kernel.setRandom();
result.setZero();
result_host.setZero();
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
result_host=input.convolve(kernel, dims3);
for(int i=0; i< outdim0; i++ ){
for(int j=0; j< outdim1; j++ ){
for(int k=0; k< outdim2; k++ ){
if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
assert(false);
}
}
}
}
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_result);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_larg_expr2D(const Eigen::SyclDevice& sycl_device)
{
int indim0 =53;
int indim1= 55;
int indim2= 51;
int outdim0=50;
int outdim1=51;
int outdim2=51;
Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
Eigen::array<IndexType, 2> kernel_dims = {{4,5}};
Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 2, DataLayout,IndexType> kernel(kernel_dims);
Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
Eigen::array<IndexType, 2> dims3{{0,1}};
input.setRandom();
kernel.setRandom();
result.setZero();
result_host.setZero();
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
result_host=input.convolve(kernel, dims3);
for(int i=0; i< outdim0; i++ ){
for(int j=0; j< outdim1; j++ ){
for(int k=0; k< outdim2; k++ ){
if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
assert(false);
}
}
}
}
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_result);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_larg_expr3D(const Eigen::SyclDevice& sycl_device)
{
int indim0 =53;
int indim1= 55;
int indim2= 51;
int outdim0=50;
int outdim1=51;
int outdim2=49;
Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
Eigen::array<IndexType, 3> kernel_dims = {{4,5,3}};
Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 3, DataLayout,IndexType> kernel(kernel_dims);
Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
Eigen::array<IndexType, 3> dims3{{0,1,2}};
input.setRandom();
kernel.setRandom();
result.setZero();
result_host.setZero();
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
result_host=input.convolve(kernel, dims3);
for(int i=0; i< outdim0; i++ ){
for(int j=0; j< outdim1; j++ ){
for(int k=0; k< outdim2; k++ ){
if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
assert(false);
}
}
}
}
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_result);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_evals(const Eigen::SyclDevice& sycl_device)
{
Eigen::array<IndexType, 2> input_dims = {{3, 3}};
Eigen::array<IndexType, 1> kernel_dims = {{2}};
Eigen::array<IndexType, 2> result_dims = {{2, 3}};
Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
Tensor<DataType, 2, DataLayout,IndexType> result(result_dims);
Eigen::array<IndexType, 1> dims3{{0}};
input.setRandom();
kernel.setRandom();
result.setZero();
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_result(d_result, result_dims);
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_result);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_expr(const Eigen::SyclDevice& sycl_device)
{
Eigen::array<IndexType, 2> input_dims = {{3, 3}};
Eigen::array<IndexType, 2> kernel_dims = {{2, 2}};
Eigen::array<IndexType, 2> result_dims = {{2, 2}};
Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 2, DataLayout, IndexType> kernel(kernel_dims);
Tensor<DataType, 2, DataLayout, IndexType> result(result_dims);
input.setRandom();
kernel.setRandom();
Eigen::array<IndexType, 2> dims;
dims[0] = 0;
dims[1] = 1;
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_result(d_result, result_dims);
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_result);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_modes(const Eigen::SyclDevice& sycl_device){
Eigen::array<IndexType, 1> input_dims = {{3}};
Eigen::array<IndexType, 1> kernel_dims = {{3}};
Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
input.setRandom();
kernel.setRandom();
Eigen::array<IndexType, 1> dims;
dims[0] = 0;
input(0) = 1.0f;
input(1) = 2.0f;
input(2) = 3.0f;
kernel(0) = 0.5f;
kernel(1) = 1.0f;
kernel(2) = 0.0f;
Eigen::array<std::pair<IndexType, IndexType>, 1> padding;
// Emulate VALID mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(0, 0);
Tensor<DataType, 1, DataLayout, IndexType> valid(1);
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t valid_bytes = valid.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_valid = static_cast<DataType*>(sycl_device.allocate(valid_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_valid(d_valid, valid.dimensions());
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_valid.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
sycl_device.memcpyDeviceToHost(valid.data(), d_valid, valid_bytes);
VERIFY_IS_EQUAL(valid.dimension(0), 1);
VERIFY_IS_APPROX(valid(0), 2.5f);
// Emulate SAME mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(1, 1);
Tensor<DataType, 1, DataLayout, IndexType> same(3);
std::size_t same_bytes = same.size() * sizeof(DataType);
DataType * d_same = static_cast<DataType*>(sycl_device.allocate(same_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_same(d_same, same.dimensions());
gpu_same.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
sycl_device.memcpyDeviceToHost(same.data(), d_same, same_bytes);
VERIFY_IS_EQUAL(same.dimension(0), 3);
VERIFY_IS_APPROX(same(0), 1.0f);
VERIFY_IS_APPROX(same(1), 2.5f);
VERIFY_IS_APPROX(same(2), 4.0f);
// Emulate FULL mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(2, 2);
Tensor<DataType, 1, DataLayout, IndexType> full(5);
std::size_t full_bytes = full.size() * sizeof(DataType);
DataType * d_full = static_cast<DataType*>(sycl_device.allocate(full_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_full(d_full, full.dimensions());
gpu_full.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
sycl_device.memcpyDeviceToHost(full.data(), d_full, full_bytes);
VERIFY_IS_EQUAL(full.dimension(0), 5);
VERIFY_IS_APPROX(full(0), 0.0f);
VERIFY_IS_APPROX(full(1), 1.0f);
VERIFY_IS_APPROX(full(2), 2.5f);
VERIFY_IS_APPROX(full(3), 4.0f);
VERIFY_IS_APPROX(full(4), 1.5f);
sycl_device.deallocate(d_input);
sycl_device.deallocate(d_kernel);
sycl_device.deallocate(d_valid);
sycl_device.deallocate(d_same);
sycl_device.deallocate(d_full);
}
template <typename DataType, int DataLayout, typename IndexType>
static void test_strides(const Eigen::SyclDevice& sycl_device){
Eigen::array<IndexType, 1> input_dims = {{13}};
Eigen::array<IndexType, 1> kernel_dims = {{3}};
Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
Tensor<DataType, 1, DataLayout, IndexType> result(2);
input.setRandom();
kernel.setRandom();
Eigen::array<IndexType, 1> dims;
dims[0] = 0;
Eigen::array<IndexType, 1> stride_of_3;
stride_of_3[0] = 3;
Eigen::array<IndexType, 1> stride_of_2;
stride_of_2[0] = 2;
std::size_t input_bytes = input.size() * sizeof(DataType);
std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
std::size_t result_bytes = result.size() * sizeof(DataType);
DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_result(d_result, result.dimensions());
sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
gpu_result.device(sycl_device)=gpu_input.stride(stride_of_3).convolve(gpu_kernel, dims).stride(stride_of_2);
sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) +
input(6)*kernel(2)));
VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) +
input(12)*kernel(2)));
}
template <typename Dev_selector> void tensorConvolutionPerDevice(Dev_selector& s){
QueueInterface queueInterface(s);
auto sycl_device=Eigen::SyclDevice(&queueInterface);
test_larg_expr1D<float, RowMajor, ptrdiff_t>(sycl_device);
test_larg_expr1D<float, ColMajor, ptrdiff_t>(sycl_device);
test_larg_expr2D<float, RowMajor, ptrdiff_t>(sycl_device);
test_larg_expr2D<float, ColMajor, ptrdiff_t>(sycl_device);
test_larg_expr3D<float, RowMajor, ptrdiff_t>(sycl_device);
test_larg_expr3D<float, ColMajor, ptrdiff_t>(sycl_device);
test_evals<float, ColMajor, ptrdiff_t>(sycl_device);
test_evals<float, RowMajor, ptrdiff_t>(sycl_device);
test_expr<float, ColMajor, ptrdiff_t>(sycl_device);
test_expr<float, RowMajor, ptrdiff_t>(sycl_device);
test_modes<float, ColMajor, ptrdiff_t>(sycl_device);
test_modes<float, RowMajor, ptrdiff_t>(sycl_device);
test_strides<float, ColMajor, ptrdiff_t>(sycl_device);
test_strides<float, RowMajor, ptrdiff_t>(sycl_device);
}
void test_cxx11_tensor_convolution_sycl() {
for (const auto& device :Eigen::get_sycl_supported_devices()) {
CALL_SUBTEST(tensorConvolutionPerDevice(device));
}
}

View File

@ -242,9 +242,6 @@ static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){
Scalar1* gpu_in_data = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1)));
Scalar2 * gpu_out_data = static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2)));
TensorMap<Tensor<Scalar1, 1, DataLayout>> gpu_in(gpu_in_data, tensorRange);
TensorMap<Tensor<Scalar2, 1, DataLayout>> gpu_out(gpu_out_data, tensorRange);
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1));