2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-04-12 19:20:36 +08:00

for 4x4 matrices implement the special algorithm that Markos proposed,

falling back to the general algorithm in the bad case.
This commit is contained in:
Benoit Jacob 2008-04-15 20:15:36 +00:00
parent 2a86f052a5
commit 6747b45ae7

@ -89,10 +89,10 @@ template<typename ExpressionType, bool CheckExistence> class Inverse : ei_no_ass
enum { _Size = MatrixType::RowsAtCompileTime };
void _compute(const ExpressionType& xpr);
void _compute_in_general_case(const ExpressionType& xpr);
void _compute_unrolled(const ExpressionType& xpr);
template<int Size, int Step, bool Finished = Size==Dynamic> struct _unroll_first_loop;
template<int Size, int Step, bool Finished = Size==Dynamic> struct _unroll_second_loop;
template<int Size, int Step, bool Finished = Size==Dynamic> struct _unroll_third_loop;
void _compute_in_size1_case(const ExpressionType& xpr);
void _compute_in_size2_case(const ExpressionType& xpr);
void _compute_in_size3_case(const ExpressionType& xpr);
void _compute_in_size4_case(const ExpressionType& xpr);
protected:
bool m_exists;
@ -141,127 +141,85 @@ void Inverse<ExpressionType, CheckExistence>
}
}
template<typename ExpressionType, bool CheckExistence>
void Inverse<ExpressionType, CheckExistence>
::_compute_unrolled(const ExpressionType& xpr)
template<typename ExpressionType, typename MatrixType, bool CheckExistence>
bool ei_compute_size2_inverse(const ExpressionType& xpr, MatrixType* result)
{
MatrixType matrix(xpr);
const RealScalar max = CheckExistence ? matrix.cwiseAbs().maxCoeff()
: static_cast<RealScalar>(0);
const int size = MatrixType::RowsAtCompileTime;
_unroll_first_loop<size, 0>::run(*this, matrix, max);
if(CheckExistence && !m_exists) return;
_unroll_second_loop<size, 0>::run(*this, matrix, max);
if(CheckExistence && !m_exists) return;
_unroll_third_loop<size, 1>::run(*this, matrix, max);
typedef typename MatrixType::Scalar Scalar;
const typename ei_nested<ExpressionType, 1+CheckExistence>::type matrix(xpr);
const Scalar det = matrix.determinant();
if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
return false;
const Scalar invdet = static_cast<Scalar>(1) / det;
result->coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result->coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result->coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result->coeffRef(1,1) = matrix.coeff(0,0) * invdet;
return true;
}
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step, bool Finished>
struct Inverse<ExpressionType, CheckExistence>::_unroll_first_loop
void Inverse<ExpressionType, CheckExistence>::_compute_in_size3_case(const ExpressionType& xpr)
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
static void run(Inv& object, MatrixType& matrix, const RealScalar& max)
const typename ei_nested<ExpressionType, 2+CheckExistence>::type matrix(xpr);
const Scalar det_minor00 = matrix.minor(0,0).determinant();
const Scalar det_minor10 = matrix.minor(1,0).determinant();
const Scalar det_minor20 = matrix.minor(2,0).determinant();
const Scalar det = det_minor00 * matrix.coeff(0,0)
- det_minor10 * matrix.coeff(1,0)
+ det_minor20 * matrix.coeff(2,0);
if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
m_exists = false;
else
{
MatrixType& inverse = object.m_inverse;
int rowOfBiggest;
const RealScalar max_in_this_col
= matrix.col(Step).template end<Size-Step>().cwiseAbs().maxCoeff(&rowOfBiggest);
if(CheckExistence && ei_isMuchSmallerThan(max_in_this_col, max))
{ object.m_exists = false; return; }
inverse.row(Step).swap(inverse.row(Step+rowOfBiggest));
matrix.row(Step).swap(matrix.row(Step+rowOfBiggest));
const Scalar d = matrix(Step,Step);
inverse.template block<Size-Step-1, Size>(Step+1, 0)
-= matrix.col(Step).template end<Size-Step-1>() * (inverse.row(Step) / d);
matrix.template corner<Size-Step-1, Size-Step>(BottomRight)
-= matrix.col(Step).template end<Size-Step-1>()
* (matrix.row(Step).template end<Size-Step>() / d);
_unroll_first_loop<Size, Step+1, Step >= Size-2>::run(object, matrix, max);
const Scalar invdet = static_cast<Scalar>(1) / det;
m_inverse.coeffRef(0, 0) = det_minor00 * invdet;
m_inverse.coeffRef(0, 1) = -det_minor10 * invdet;
m_inverse.coeffRef(0, 2) = det_minor20 * invdet;
m_inverse.coeffRef(1, 0) = -matrix.minor(0,1).determinant() * invdet;
m_inverse.coeffRef(1, 1) = matrix.minor(1,1).determinant() * invdet;
m_inverse.coeffRef(1, 2) = -matrix.minor(2,1).determinant() * invdet;
m_inverse.coeffRef(2, 0) = matrix.minor(0,2).determinant() * invdet;
m_inverse.coeffRef(2, 1) = -matrix.minor(1,2).determinant() * invdet;
m_inverse.coeffRef(2, 2) = matrix.minor(2,2).determinant() * invdet;
}
};
}
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step>
struct Inverse<ExpressionType, CheckExistence>::_unroll_first_loop<Step, Size, true>
void Inverse<ExpressionType, CheckExistence>::_compute_in_size4_case(const ExpressionType& xpr)
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
static void run(Inv&, MatrixType&, const RealScalar&) {}
};
typedef Block<ExpressionType,2,2> XprBlock22;
typedef typename XprBlock22::Eval Block22;
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step, bool Finished>
struct Inverse<ExpressionType, CheckExistence>::_unroll_second_loop
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
Block22 P_inverse;
static void run(Inv& object, MatrixType& matrix, const RealScalar& max)
if(ei_compute_size2_inverse<XprBlock22, Block22, true>(xpr.template block<2,2>(0,0), &P_inverse))
{
MatrixType& inverse = object.m_inverse;
if(Step == Size-1)
const Block22 Q = xpr.template block<2,2>(0,2);
const Block22 P_inverse_times_Q = P_inverse * Q;
const Block22 R = xpr.template block<2,2>(2,0);
const Block22 R_times_P_inverse = R * P_inverse;
const Block22 R_times_P_inverse_times_Q = R_times_P_inverse * Q;
const Block22 S = xpr.template block<2,2>(2,2);
const Block22 X = S - R_times_P_inverse_times_Q;
Block22 Y;
if(ei_compute_size2_inverse<Block22, Block22, true>(X, &Y))
{
if(CheckExistence && ei_isMuchSmallerThan(matrix(Size-1,Size-1), max))
{ object.m_exists = false; return; }
inverse.row(Size-1) /= matrix(Size-1,Size-1);
m_inverse.template block<2,2>(2,2) = Y;
m_inverse.template block<2,2>(2,0) = - Y * R_times_P_inverse;
const Block22 Z = P_inverse_times_Q * Y;
m_inverse.template block<2,2>(0,2) = - Z;
m_inverse.template block<2,2>(0,0) = P_inverse + Z * R_times_P_inverse;
}
else
{
const Scalar d = static_cast<Scalar>(1)/matrix(Step,Step);
matrix.row(Step).template end<Size-Step>() *= d;
inverse.row(Step) *= d;
m_exists = false; return;
}
_unroll_second_loop<Size, Step+1, Step >= Size-1>::run(object, matrix, max);
}
};
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step>
struct Inverse<ExpressionType, CheckExistence>::_unroll_second_loop <Step, Size, true>
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
static void run(Inv&, MatrixType&, const RealScalar&) {}
};
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step, bool Finished>
struct Inverse<ExpressionType, CheckExistence>::_unroll_third_loop
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
static void run(Inv& object, MatrixType& matrix, const RealScalar& max)
else
{
MatrixType& inverse = object.m_inverse;
inverse.template block<Size-Step,Size>(0,0)
-= matrix.col(Size-Step).template start<Size-Step>() * inverse.row(Size-Step);
_unroll_third_loop<Size, Step+1, Step >= Size-1>::run(object, matrix, max);
_compute_in_general_case(xpr);
}
};
template<typename ExpressionType, bool CheckExistence>
template<int Size, int Step>
struct Inverse<ExpressionType, CheckExistence>::_unroll_third_loop<Step, Size, true>
{
typedef Inverse<ExpressionType, CheckExistence> Inv;
typedef typename Inv::MatrixType MatrixType;
typedef typename Inv::RealScalar RealScalar;
static void run(Inv&, MatrixType&, const RealScalar&) {}
};
}
template<typename ExpressionType, bool CheckExistence>
void Inverse<ExpressionType, CheckExistence>::_compute(const ExpressionType& xpr)
@ -276,46 +234,13 @@ void Inverse<ExpressionType, CheckExistence>::_compute(const ExpressionType& xpr
}
else if(_Size == 2)
{
const typename ei_nested<ExpressionType, 1+CheckExistence>::type matrix(xpr);
const Scalar det = matrix.determinant();
if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
m_exists = false;
if(CheckExistence)
m_exists = ei_compute_size2_inverse<ExpressionType, MatrixType, true>(xpr, &m_inverse);
else
{
const Scalar invdet = static_cast<Scalar>(1) / det;
m_inverse.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
m_inverse.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
m_inverse.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
m_inverse.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
ei_compute_size2_inverse<ExpressionType, MatrixType, false>(xpr, &m_inverse);
}
else if(_Size == 3)
{
const typename ei_nested<ExpressionType, 2+CheckExistence>::type matrix(xpr);
const Scalar det_minor00 = matrix.minor(0,0).determinant();
const Scalar det_minor10 = matrix.minor(1,0).determinant();
const Scalar det_minor20 = matrix.minor(2,0).determinant();
const Scalar det = det_minor00 * matrix.coeff(0,0)
- det_minor10 * matrix.coeff(1,0)
+ det_minor20 * matrix.coeff(2,0);
if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
m_exists = false;
else
{
const Scalar invdet = static_cast<Scalar>(1) / det;
m_inverse.coeffRef(0, 0) = det_minor00 * invdet;
m_inverse.coeffRef(0, 1) = -det_minor10 * invdet;
m_inverse.coeffRef(0, 2) = det_minor20 * invdet;
m_inverse.coeffRef(1, 0) = -matrix.minor(0,1).determinant() * invdet;
m_inverse.coeffRef(1, 1) = matrix.minor(1,1).determinant() * invdet;
m_inverse.coeffRef(1, 2) = -matrix.minor(2,1).determinant() * invdet;
m_inverse.coeffRef(2, 0) = matrix.minor(0,2).determinant() * invdet;
m_inverse.coeffRef(2, 1) = -matrix.minor(1,2).determinant() * invdet;
m_inverse.coeffRef(2, 2) = matrix.minor(2,2).determinant() * invdet;
}
}
else if(_Size == 4)
_compute_unrolled(xpr);
else if(_Size == 3) _compute_in_size3_case(xpr);
else if(_Size == 4) _compute_in_size4_case(xpr);
else _compute_in_general_case(xpr);
}