* add Map<Quaternion> test based on Map from test/map.cpp

* replace implicit constructor AngleAxis(QuaternionBase&) by an explicit one, it seems ambiguous for the compiler
* remove explicit constructor with conversion type quaternion(Quaternion&): conflict between constructor.
* modify EIGEN_INHERIT_ASSIGNEMENT_OPERATORS to suit Quaternion class
This commit is contained in:
Mathieu Gautier 2009-11-13 16:41:51 +01:00
parent d07c05b3a5
commit 6680fa42ee
6 changed files with 112 additions and 55 deletions

View File

@ -168,7 +168,7 @@ using Eigen::ei_cos;
#endif
// EIGEN_FORCE_INLINE means "inline as much as possible"
#if (defined _MSC_VER)
#if (defined _MSC_VER) || (defined __intel_compiler)
#define EIGEN_STRONG_INLINE __forceinline
#else
#define EIGEN_STRONG_INLINE inline
@ -261,25 +261,25 @@ using Eigen::ei_cos;
#define EIGEN_REF_TO_TEMPORARY const &
#endif
#ifdef _MSC_VER
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
using Base::operator =; \
using Base::operator +=; \
using Base::operator -=; \
using Base::operator *=; \
using Base::operator /=;
#if defined(_MSC_VER) && (!defined(__INTEL_COMPILER))
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
using Base::operator =;
#else
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
using Base::operator =; \
EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
{ \
Base::operator=(other); \
return *this; \
}
#endif
#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
using Base::operator +=; \
using Base::operator -=; \
using Base::operator *=; \
using Base::operator /=; \
EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
{ \
return Base::operator=(other); \
}
#endif
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
#define _EIGEN_GENERIC_PUBLIC_INTERFACE(Derived, BaseClass) \
typedef BaseClass Base; \

View File

@ -89,7 +89,7 @@ public:
template<typename Derived>
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
inline AngleAxis(const QuaternionType& q) { *this = q; }
template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
@ -116,7 +116,8 @@ public:
AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
AngleAxis& operator=(const QuaternionType& q);
template<class QuatDerived>
AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
template<typename Derived>
AngleAxis& operator=(const MatrixBase<Derived>& m);
@ -160,7 +161,8 @@ typedef AngleAxis<double> AngleAxisd;
* The axis is normalized.
*/
template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
Scalar n2 = q.vec().squaredNorm();
if (n2 < precision<Scalar>()*precision<Scalar>())

View File

@ -88,7 +88,8 @@ public:
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline typename ei_traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
template<class OtherDerived> Derived& operator=(const QuaternionBase<OtherDerived>& other);
EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
@ -133,19 +134,28 @@ public:
*/
template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> inline Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */
Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */
template<typename Derived1, typename Derived2>
Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> inline Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> inline Derived& operator*= (const QuaternionBase<OtherDerived>& q);
template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */
Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */
Quaternion<Scalar> conjugate() const;
/** \returns an interpolation for a constant motion between \a other and \c *this
* \a t in [0;1]
* see http://en.wikipedia.org/wiki/Slerp
*/
template<class OtherDerived> Quaternion<Scalar> slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
@ -156,7 +166,8 @@ public:
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = precision<Scalar>()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
Vector3 _transformVector(Vector3 v) const;
/** return the result vector of \a v through the rotation*/
EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@ -210,11 +221,12 @@ struct ei_traits<Quaternion<_Scalar> >
template<typename _Scalar>
class Quaternion : public QuaternionBase<Quaternion<_Scalar> >{
typedef QuaternionBase<Quaternion<_Scalar> > Base;
public:
using Base::operator=;
public:
typedef _Scalar Scalar;
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion<Scalar>)
using Base::operator*=;
typedef typename ei_traits<Quaternion<Scalar> >::Coefficients Coefficients;
typedef typename Base::AngleAxisType AngleAxisType;
@ -228,15 +240,13 @@ public:
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
{ coeffs() << x, y, z, w; }
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){}
/** Constructs and initialize a quaternion from the array data
* This constructor is also used to map an array */
/** Constructs and initialize a quaternion from the array data */
inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */
// template<class Derived> inline Quaternion(const QuaternionBase<Derived>& other) { m_coeffs = other.coeffs(); } [XXX] redundant with 703
template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
@ -248,11 +258,6 @@ public:
template<typename Derived>
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Copy constructor with scalar type conversion */
template<typename Derived>
inline explicit Quaternion(const QuaternionBase<Derived>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
inline Coefficients& coeffs() { return m_coeffs;}
inline const Coefficients& coeffs() const { return m_coeffs;}
@ -289,7 +294,7 @@ struct ei_traits<Map<Quaternion<_Scalar>, _PacketAccess> >:
ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
typedef Map<Matrix<_Scalar,4,1> > Coefficients;
typedef Map<Matrix<_Scalar,4,1>, _PacketAccess> Coefficients;
enum {
PacketAccess = _PacketAccess
};
@ -297,13 +302,22 @@ ei_traits<Quaternion<_Scalar> >
template<typename _Scalar, int PacketAccess>
class Map<Quaternion<_Scalar>, PacketAccess >
: public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >,
ei_no_assignment_operator
: public QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> >
{
public:
public:
typedef _Scalar Scalar;
typedef typename ei_traits<Map>::Coefficients Coefficients;
typedef Map<Quaternion<Scalar>, PacketAccess > MapQuat;
private:
Map<Quaternion<Scalar>, PacketAccess >();
Map<Quaternion<Scalar>, PacketAccess >(const Map<Quaternion<Scalar>, PacketAccess>&);
typedef QuaternionBase<Map<Quaternion<_Scalar>, PacketAccess> > Base;
public:
EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(MapQuat)
using Base::operator*=;
typedef typename ei_traits<Map<Quaternion<Scalar>, PacketAccess> >::Coefficients Coefficients;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
@ -311,7 +325,7 @@ class Map<Quaternion<_Scalar>, PacketAccess >
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template paramter PacketAccess is set to Aligned, then the pointer coeffs must be aligned. */
inline Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
inline Coefficients& coeffs() { return m_coeffs;}
inline const Coefficients& coeffs() const { return m_coeffs;}
@ -320,10 +334,18 @@ class Map<Quaternion<_Scalar>, PacketAccess >
Coefficients m_coeffs;
};
typedef Map<Quaternion<double> > QuaternionMapd;
typedef Map<Quaternion<float> > QuaternionMapf;
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/** \ingroup Geometry_Module
* Map an unaligned array of single precision scalar as a quaternion */
typedef Map<Quaternion<float>, 0> QuaternionMapf;
/** \ingroup Geometry_Module
* Map an unaligned array of double precision scalar as a quaternion */
typedef Map<Quaternion<double>, 0> QuaternionMapd;
/** \ingroup Geometry_Module
* Map a 16-bits aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/** \ingroup Geometry_Module
* Map a 16-bits aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/***************************************************************************
* Implementation of QuaternionBase methods
@ -333,7 +355,7 @@ typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
// This product can be specialized for a given architecture via the Arch template argument.
template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAccess> struct ei_quat_product
{
inline static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
EIGEN_STRONG_INLINE static Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
@ -347,7 +369,7 @@ template<int Arch, class Derived1, class Derived2, typename Scalar, int PacketAc
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
inline Quaternion<typename ei_traits<Derived>::Scalar>
EIGEN_STRONG_INLINE Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Derived::Scalar, typename OtherDerived::Scalar>::ret),
@ -360,7 +382,7 @@ QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) c
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
inline Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
return (derived() = derived() * other.derived());
}
@ -373,7 +395,7 @@ inline Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherD
* - Via a Matrix3: 24 + 15n
*/
template <class Derived>
inline typename QuaternionBase<Derived>::Vector3
EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(Vector3 v) const
{
// Note that this algorithm comes from the optimization by hand
@ -385,9 +407,16 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
return v + this->w() * uv + this->vec().cross(uv);
}
template<class Derived>
EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
coeffs() = other.coeffs();
return derived();
}
template<class Derived>
template<class OtherDerived>
inline Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return derived();
@ -396,7 +425,7 @@ inline Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDer
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
inline Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = ei_cos(ha);

View File

@ -73,7 +73,7 @@ class RotationBase
* - a vector of size Dim
*/
template<typename OtherDerived>
inline typename ei_rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
EIGEN_STRONG_INLINE typename ei_rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
operator*(const AnyMatrixBase<OtherDerived>& e) const
{ return ei_rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
@ -107,7 +107,7 @@ struct ei_rotation_base_generic_product_selector<RotationDerived,OtherVectorType
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
inline static ReturnType run(const RotationDerived& r, const OtherVectorType& v)
EIGEN_STRONG_INLINE static ReturnType run(const RotationDerived& r, const OtherVectorType& v)
{
return r._transformVector(v);
}

View File

@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -84,7 +85,7 @@ template<typename Scalar> void quaternion(void)
// angle-axis conversion
AngleAxisx aa = q1;
AngleAxisx aa = AngleAxisx(q1);
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
@ -110,10 +111,35 @@ template<typename Scalar> void quaternion(void)
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
}
template<typename Scalar> void mapQuaternion(void){
typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
typedef Map<Quaternion<Scalar> > MQuaternionUA;
typedef Quaternion<Scalar> Quaternionx;
EIGEN_ALIGN16 Scalar array1[4];
EIGEN_ALIGN16 Scalar array2[4];
EIGEN_ALIGN16 Scalar array3[4+1];
Scalar* array3unaligned = array3+1;
MQuaternionA(array1).coeffs().setRandom();
(MQuaternionA(array2)) = MQuaternionA(array1);
(MQuaternionUA(array3unaligned)) = MQuaternionA(array1);
Quaternionx q1 = MQuaternionA(array1);
Quaternionx q2 = MQuaternionA(array2);
Quaternionx q3 = MQuaternionUA(array3unaligned);
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
}
void test_geo_quaternion()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( quaternion<float>() );
CALL_SUBTEST_2( quaternion<double>() );
CALL_SUBTEST( mapQuaternion<float>() );
CALL_SUBTEST( mapQuaternion<double>() );
}
}

View File

@ -81,7 +81,7 @@ template<typename Scalar, int Mode> void transformations(void)
* (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxisx aa = q1;
AngleAxisx aa = AngleAxisx(q1);
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);