Add support for matrix sine, cosine, sinh and cosh.

This commit is contained in:
Jitse Niesen 2010-01-11 18:05:30 +00:00
parent a05d42616b
commit 65cd1c7639
8 changed files with 401 additions and 22 deletions

View File

@ -41,6 +41,15 @@ namespace Eigen {
* \brief This module aims to provide various methods for the computation of
* matrix functions.
*
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
* is an entire function (that is, a function on the complex plane
* that is everywhere complex differentiable). Then its Taylor
* series
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
* converges to \f$ f(x) \f$. In this case, we can define the matrix
* function by the same series:
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
*
* \code
* #include <unsupported/Eigen/MatrixFunctions>
* \endcode

View File

@ -33,8 +33,8 @@
*
* \brief Compute the matrix exponential.
*
* \param M matrix whose exponential is to be computed.
* \param result pointer to the matrix in which to store the result.
* \param[in] M matrix whose exponential is to be computed.
* \param[out] result pointer to the matrix in which to store the result.
*
* The matrix exponential of \f$ M \f$ is defined by
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -25,12 +25,8 @@
#ifndef EIGEN_MATRIX_FUNCTION
#define EIGEN_MATRIX_FUNCTION
template <typename Scalar>
struct ei_stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
#include "StemFunction.h"
#include "MatrixFunctionAtomic.h"
/** \ingroup MatrixFunctions_Module
*
@ -43,14 +39,15 @@ struct ei_stem_function
* This function computes \f$ f(A) \f$ and stores the result in the
* matrix pointed to by \p result.
*
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
* is an entire function (that is, a function on the complex plane
* that is everywhere complex differentiable). Then its Taylor
* series
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
* converges to \f$ f(x) \f$. In this case, we can define the matrix
* function by the same series:
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
* Suppose that \p M is a matrix whose entries have type \c Scalar.
* Then, the second argument, \p f, should be a function with prototype
* \code
* ComplexScalar f(ComplexScalar, int)
* \endcode
* where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
* real (e.g., \c float or \c double) and \c ComplexScalar =
* \c Scalar if \c Scalar is complex. The return value of \c f(x,n)
* should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
*
* This routine uses the algorithm described in:
* Philip Davies and Nicholas J. Higham,
@ -73,19 +70,21 @@ struct ei_stem_function
* the z-axis. This is the same example as used in the documentation
* of ei_matrix_exponential().
*
* Note that the function \c expfn is defined for complex numbers \c x,
* even though the matrix \c A is over the reals.
*
* \include MatrixFunction.cpp
* Output: \verbinclude MatrixFunction.out
*
* Note that the function \c expfn is defined for complex numbers
* \c x, even though the matrix \c A is over the reals. Instead of
* \c expfn, we could also have used StdStemFunctions::exp:
* \code
* ei_matrix_function(A, StdStemFunctions<std::complex<double> >::exp, &B);
* \endcode
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f,
typename MatrixBase<Derived>::PlainMatrixType* result);
#include "MatrixFunctionAtomic.h"
/** \ingroup MatrixFunctions_Module
* \brief Helper class for computing matrix functions.
@ -510,4 +509,94 @@ EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
MatrixFunction<PlainMatrixType>(M, f, result);
}
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix sine.
*
* \param[in] M a square matrix.
* \param[out] result pointer to matrix in which to store the result, \f$ \sin(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::sin().
*
* \include MatrixSine.cpp
* Output: \verbinclude MatrixSine.out
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_sin(const MatrixBase<Derived>& M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
typedef typename MatrixBase<Derived>::PlainMatrixType PlainMatrixType;
typedef typename ei_traits<PlainMatrixType>::Scalar Scalar;
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
MatrixFunction<PlainMatrixType>(M, StdStemFunctions<ComplexScalar>::sin, result);
}
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix cosine.
*
* \param[in] M a square matrix.
* \param[out] result pointer to matrix in which to store the result, \f$ \cos(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::cos().
*
* \sa ei_matrix_sin() for an example.
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_cos(const MatrixBase<Derived>& M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
typedef typename MatrixBase<Derived>::PlainMatrixType PlainMatrixType;
typedef typename ei_traits<PlainMatrixType>::Scalar Scalar;
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
MatrixFunction<PlainMatrixType>(M, StdStemFunctions<ComplexScalar>::cos, result);
}
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix hyperbolic sine.
*
* \param[in] M a square matrix.
* \param[out] result pointer to matrix in which to store the result, \f$ \sinh(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::sinh().
*
* \include MatrixSinh.cpp
* Output: \verbinclude MatrixSinh.out
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_sinh(const MatrixBase<Derived>& M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
typedef typename MatrixBase<Derived>::PlainMatrixType PlainMatrixType;
typedef typename ei_traits<PlainMatrixType>::Scalar Scalar;
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
MatrixFunction<PlainMatrixType>(M, StdStemFunctions<ComplexScalar>::sinh, result);
}
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix hyberpolic cosine.
*
* \param[in] M a square matrix.
* \param[out] result pointer to matrix in which to store the result, \f$ \cosh(M) \f$
*
* This function calls ei_matrix_function() with StdStemFunctions::cosh().
*
* \sa ei_matrix_sinh() for an example.
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_cosh(const MatrixBase<Derived>& M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
typedef typename MatrixBase<Derived>::PlainMatrixType PlainMatrixType;
typedef typename ei_traits<PlainMatrixType>::Scalar Scalar;
typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
MatrixFunction<PlainMatrixType>(M, StdStemFunctions<ComplexScalar>::cosh, result);
}
#endif // EIGEN_MATRIX_FUNCTION

View File

@ -0,0 +1,123 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_STEM_FUNCTION
#define EIGEN_STEM_FUNCTION
template <typename Scalar>
struct ei_stem_function
{
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef ComplexScalar type(ComplexScalar, int);
};
/** \ingroup MatrixFunctions_Module
* \brief Stem functions corresponding to standard mathematical functions.
*/
template <typename Scalar>
class StdStemFunctions
{
public:
/** \brief The exponential function (and its derivatives). */
static Scalar exp(Scalar x, int)
{
return std::exp(x);
}
/** \brief Cosine (and its derivatives). */
static Scalar cos(Scalar x, int n)
{
Scalar res;
switch (n % 4) {
case 0:
res = std::cos(x);
break;
case 1:
res = -std::sin(x);
break;
case 2:
res = -std::cos(x);
break;
case 3:
res = std::sin(x);
break;
}
return res;
}
/** \brief Sine (and its derivatives). */
static Scalar sin(Scalar x, int n)
{
Scalar res;
switch (n % 4) {
case 0:
res = std::sin(x);
break;
case 1:
res = std::cos(x);
break;
case 2:
res = -std::sin(x);
break;
case 3:
res = -std::cos(x);
break;
}
return res;
}
/** \brief Hyperbolic cosine (and its derivatives). */
static Scalar cosh(Scalar x, int n)
{
Scalar res;
switch (n % 2) {
case 0:
res = std::cosh(x);
break;
case 1:
res = std::sinh(x);
break;
}
return res;
}
/** \brief Hyperbolic sine (and its derivatives). */
static Scalar sinh(Scalar x, int n)
{
Scalar res;
switch (n % 2) {
case 0:
res = std::sinh(x);
break;
case 1:
res = std::cosh(x);
break;
}
return res;
}
}; // end of class StdStemFunctions
#endif // EIGEN_STEM_FUNCTION

View File

@ -0,0 +1,21 @@
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;
int main()
{
MatrixXd A = MatrixXd::Random(3,3);
std::cout << "A = \n" << A << "\n\n";
MatrixXd sinA;
ei_matrix_sin(A, &sinA);
std::cout << "sin(A) = \n" << sinA << "\n\n";
MatrixXd cosA;
ei_matrix_cos(A, &cosA);
std::cout << "cos(A) = \n" << cosA << "\n\n";
// The matrix functions satisfy sin^2(A) + cos^2(A) = I,
// like the scalar functions.
std::cout << "sin^2(A) + cos^2(A) = \n" << sinA*sinA + cosA*cosA << "\n\n";
}

View File

@ -0,0 +1,21 @@
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;
int main()
{
MatrixXf A = MatrixXf::Random(3,3);
std::cout << "A = \n" << A << "\n\n";
MatrixXf sinhA;
ei_matrix_sinh(A, &sinhA);
std::cout << "sinh(A) = \n" << sinhA << "\n\n";
MatrixXf coshA;
ei_matrix_cosh(A, &coshA);
std::cout << "cosh(A) = \n" << coshA << "\n\n";
// The matrix functions satisfy cosh^2(A) - sinh^2(A) = I,
// like the scalar functions.
std::cout << "cosh^2(A) - sinh^2(A) = \n" << coshA*coshA - sinhA*sinhA << "\n\n";
}

View File

@ -15,6 +15,7 @@ ei_add_test(NumericalDiff)
ei_add_test(autodiff)
ei_add_test(BVH)
ei_add_test(matrix_exponential)
ei_add_test(matrix_function)
ei_add_test(alignedvector3)
ei_add_test(FFT)

View File

@ -0,0 +1,115 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
template<typename MatrixType>
void testMatrixExponential(const MatrixType& m)
{
typedef typename ei_traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
const int rows = m.rows();
const int cols = m.cols();
for (int i = 0; i < g_repeat; i++) {
MatrixType A = MatrixType::Random(rows, cols);
MatrixType expA1, expA2;
ei_matrix_exponential(A, &expA1);
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA2);
VERIFY_IS_APPROX(expA1, expA2);
}
}
template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& m)
{
const int rows = m.rows();
const int cols = m.cols();
for (int i = 0; i < g_repeat; i++) {
MatrixType A = MatrixType::Random(rows, cols);
MatrixType sinhA, coshA, expA;
ei_matrix_sinh(A, &sinhA);
ei_matrix_cosh(A, &coshA);
ei_matrix_exponential(A, &expA);
VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2);
VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2);
}
}
template<typename MatrixType>
void testGonioFunctions(const MatrixType& m)
{
typedef ei_traits<MatrixType> Traits;
typedef typename Traits::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> ComplexScalar;
typedef Matrix<ComplexScalar, Traits::RowsAtCompileTime,
Traits::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
const int rows = m.rows();
const int cols = m.cols();
ComplexScalar imagUnit(0,1);
ComplexScalar two(2,0);
for (int i = 0; i < g_repeat; i++) {
MatrixType A = MatrixType::Random(rows, cols);
ComplexMatrix Ac = A.template cast<ComplexScalar>();
ComplexMatrix exp_iA;
ei_matrix_exponential(imagUnit * Ac, &exp_iA);
MatrixType sinA;
ei_matrix_sin(A, &sinA);
ComplexMatrix sinAc = sinA.template cast<ComplexScalar>();
VERIFY_IS_APPROX(sinAc, (exp_iA - exp_iA.inverse()) / (two*imagUnit));
MatrixType cosA;
ei_matrix_cos(A, &cosA);
ComplexMatrix cosAc = cosA.template cast<ComplexScalar>();
VERIFY_IS_APPROX(cosAc, (exp_iA + exp_iA.inverse()) / 2);
}
}
template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
testMatrixExponential(m);
testHyperbolicFunctions(m);
testGonioFunctions(m);
}
void test_matrix_function()
{
CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
CALL_SUBTEST_4(testMatrixType(Matrix2d()));
CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
}