mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
Adds missing EIGEN_STRONG_INLINE to support MSVC properly inlining small vector calculations
When working with MSVC often small vector operations are not properly inlined. This behaviour is observed even on the most recent compiler versions.
This commit is contained in:
parent
746a6b7b81
commit
624df50945
@ -31,7 +31,8 @@ struct dot_nocheck
|
||||
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
|
||||
typedef typename conj_prod::result_type ResScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
EIGEN_STRONG_INLINE
|
||||
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.template binaryExpr<conj_prod>(b).sum();
|
||||
}
|
||||
@ -43,7 +44,8 @@ struct dot_nocheck<T, U, true>
|
||||
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
|
||||
typedef typename conj_prod::result_type ResScalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
EIGEN_STRONG_INLINE
|
||||
static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
|
||||
{
|
||||
return a.transpose().template binaryExpr<conj_prod>(b).sum();
|
||||
}
|
||||
@ -65,6 +67,7 @@ struct dot_nocheck<T, U, true>
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE
|
||||
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
@ -102,7 +105,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::trai
|
||||
* \sa lpNorm(), dot(), squaredNorm()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
|
||||
{
|
||||
return numext::sqrt(squaredNorm());
|
||||
}
|
||||
@ -117,7 +120,7 @@ EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::
|
||||
* \sa norm(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::PlainObject
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::normalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,2>::type _Nested;
|
||||
@ -139,7 +142,7 @@ MatrixBase<Derived>::normalized() const
|
||||
* \sa norm(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::normalize()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize()
|
||||
{
|
||||
RealScalar z = squaredNorm();
|
||||
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
|
||||
@ -160,7 +163,7 @@ EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::normalize()
|
||||
* \sa stableNorm(), stableNormalize(), normalized()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::PlainObject
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::stableNormalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,3>::type _Nested;
|
||||
@ -185,7 +188,7 @@ MatrixBase<Derived>::stableNormalized() const
|
||||
* \sa stableNorm(), stableNormalized(), normalize()
|
||||
*/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::stableNormalize()
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize()
|
||||
{
|
||||
RealScalar w = cwiseAbs().maxCoeff();
|
||||
RealScalar z = (derived()/w).squaredNorm();
|
||||
|
@ -97,8 +97,8 @@ class Product : public ProductImpl<_Lhs,_Rhs,Option,
|
||||
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
|
||||
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
|
||||
EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
|
||||
@ -127,7 +127,7 @@ public:
|
||||
using Base::derived;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
|
||||
operator const Scalar() const
|
||||
EIGEN_STRONG_INLINE operator const Scalar() const
|
||||
{
|
||||
return internal::evaluator<ProductXpr>(derived()).coeff(0,0);
|
||||
}
|
||||
@ -162,7 +162,7 @@ class ProductImpl<Lhs,Rhs,Option,Dense>
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
||||
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
||||
@ -170,7 +170,7 @@ class ProductImpl<Lhs,Rhs,Option,Dense>
|
||||
return internal::evaluator<Derived>(derived()).coeff(row,col);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar coeff(Index i) const
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
|
||||
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
|
||||
|
@ -32,7 +32,7 @@ struct evaluator<Product<Lhs, Rhs, Options> >
|
||||
typedef Product<Lhs, Rhs, Options> XprType;
|
||||
typedef product_evaluator<XprType> Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
|
||||
@ -55,7 +55,7 @@ struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
|
||||
const Product<Lhs, Rhs, DefaultProduct> > XprType;
|
||||
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
||||
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
|
||||
{}
|
||||
};
|
||||
@ -68,7 +68,7 @@ struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
|
||||
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
|
||||
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
|
||||
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
|
||||
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
|
||||
xpr.index() ))
|
||||
@ -246,19 +246,19 @@ template<typename Lhs, typename Rhs>
|
||||
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
|
||||
{
|
||||
template<typename Dst>
|
||||
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
|
||||
};
|
||||
|
||||
@ -312,25 +312,25 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
|
||||
};
|
||||
|
||||
template<typename Dst>
|
||||
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
|
||||
}
|
||||
|
||||
template<typename Dst>
|
||||
static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
{
|
||||
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
|
||||
}
|
||||
|
@ -407,7 +407,7 @@ protected:
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename Func>
|
||||
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
|
||||
DenseBase<Derived>::redux(const Func& func) const
|
||||
{
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
Loading…
Reference in New Issue
Block a user