*patch by Daniel Gomez:

- bugfix in SparseMatrix
 - add a sparse unit test
* renamed Transform::affine => linear
This commit is contained in:
Gael Guennebaud 2008-08-21 17:02:47 +00:00
parent 082e309d2a
commit 60804c306d
6 changed files with 101 additions and 30 deletions

View File

@ -95,7 +95,6 @@ template<typename ExpressionType> class Cwise
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_sin_op) sin() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_pow_op) pow(const Scalar& exponent) const;
const ScalarAddReturnType
operator+(const Scalar& scalar) const;

View File

@ -65,9 +65,9 @@ public:
typedef _Scalar Scalar;
/** type of the matrix used to represent the transformation */
typedef Matrix<Scalar,HDim,HDim> MatrixType;
/** type of the matrix used to represent the affine part of the transformation */
/** type of the matrix used to represent the linear part of the transformation */
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
/** type of read/write reference to the affine part of the transformation */
/** type of read/write reference to the linear part of the transformation */
typedef Block<MatrixType,Dim,Dim> AffinePart;
/** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
@ -110,10 +110,10 @@ public:
/** \returns a writable expression of the transformation matrix */
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the affine (linear) part of the transformation */
inline const AffinePart affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the affine (linear) part of the transformation */
inline AffinePart affine() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the linear (linear) part of the transformation */
inline const AffinePart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the linear (linear) part of the transformation */
inline AffinePart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
@ -235,7 +235,7 @@ Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
affine() = (affine() * other.asDiagonal()).lazy();
linear() = (linear() * other.asDiagonal()).lazy();
return *this;
}
@ -263,7 +263,7 @@ Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
translation() += affine() * other;
translation() += linear() * other;
return *this;
}
@ -303,7 +303,7 @@ template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
{
affine() *= ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation);
linear() *= ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation);
return *this;
}
@ -334,8 +334,8 @@ Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
VectorType tmp = affine().col(0)*sy + affine().col(1);
affine() << affine().col(0) + affine().col(1)*sx, tmp;
VectorType tmp = linear().col(0)*sy + linear().col(1);
linear() << linear().col(0) + linear().col(1)*sx, tmp;
return *this;
}
@ -360,18 +360,18 @@ template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotation() const
{
return affine().qr().matrixQ();
return linear().qr().matrixQ();
}
/** \returns the rotation part of the transformation assuming no shear in
* the affine part.
* the linear part.
* \sa extractRotation()
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotationNoShear() const
{
return affine().cwise().abs2()
return linear().cwise().abs2()
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwise().sqrt();
}
@ -384,11 +384,11 @@ Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
affine() = ToRotationMatrix<Scalar,Dim,OrientationType>::convert(orientation);
linear() = ToRotationMatrix<Scalar,Dim,OrientationType>::convert(orientation);
translation() = position;
m_matrix(Dim,Dim) = 1.;
m_matrix.template block<1,Dim>(Dim,0).setZero();
affine() *= scale.asDiagonal();
linear() *= scale.asDiagonal();
return *this;
}
@ -431,7 +431,7 @@ struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
> ResultType;
// FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
static ResultType run(const TransformType& tr, const Other& other)
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
{ return ((tr.linear().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};

View File

@ -85,11 +85,15 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
const int inner = RowMajor ? col : row;
int id = m_outerIndex[outer];
int end = m_outerIndex[outer+1]-1;
if (m_data.index(end)==inner)
return m_data.value(end);
int end = m_outerIndex[outer+1];
// optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
if (end>0 && inner==m_data.index(end-1))
return m_data.value(end-1);
else if (id==end)
return Scalar(0);
const int* r = std::lower_bound(&m_data.index(id),&m_data.index(end),inner);
return (*r==inner) ? m_data.value(*r) : Scalar(0);
return (*r==inner) ? m_data.value(r-&m_data.index(0)) : Scalar(0);
}
inline Scalar& coeffRef(int row, int col)
@ -99,9 +103,11 @@ class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
int id = m_outerIndex[outer];
int end = m_outerIndex[outer+1];
ei_assert(end>=id && "you probably called coeffRef on a non finalized matrix");
ei_assert(end>id && "coeffRef cannot be called on a zero coefficient");
int* r = std::lower_bound(&m_data.index(id),&m_data.index(end),inner);
ei_assert(*r==inner);
return m_data.value(*r);
ei_assert(*r==inner && "coeffRef cannot be called on a zero coefficient");
return m_data.value(r-&m_data.index(0));
}
public:

View File

@ -111,5 +111,6 @@ EI_ADD_TEST(geometry)
EI_ADD_TEST(regression)
EI_ADD_TEST(svd)
EI_ADD_TEST(ioformat)
EI_ADD_TEST(sparse)
ENDIF(BUILD_TESTS)

View File

@ -117,9 +117,9 @@ template<typename Scalar> void geometry(void)
q1 = AngleAxis(a, v0.normalized());
Transform3 t0, t1, t2;
t0.setIdentity();
t0.affine() = q1.toRotationMatrix();
t0.linear() = q1.toRotationMatrix();
t1.setIdentity();
t1.affine() = q1.toRotationMatrix();
t1.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;//= Vector3::Random().cwiseProduct(Vector3(10,2,0.5));
t0.scale(v0);
@ -131,10 +131,10 @@ template<typename Scalar> void geometry(void)
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.affine() = q1.toRotationMatrix();
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.affine() = q1.conjugate().toRotationMatrix();
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwise().inverse());
t1.translate(-v0);
@ -148,12 +148,12 @@ template<typename Scalar> void geometry(void)
Vector2 v20 = Vector2::Random();
Vector2 v21 = Vector2::Random();
t21.setIdentity();
t21.affine() = Rotation2D<Scalar>(a).toRotationMatrix();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity();
t21.affine() = Rotation2D<Scalar>(-a).toRotationMatrix();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).isIdentity() );
}

65
test/sparse.cpp Normal file
View File

@ -0,0 +1,65 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Sparse>
void test_sparse()
{
int rows = 4, cols = 4;
SparseMatrix<double> m(rows, cols);
m.startFill(rows);
m.fill(0, 2) = 2;
m.fill(1, 2) = 1;
m.fill(0, 3) = 5;
m.endFill();
m.coeffRef(0, 2) = 3;
VERIFY_RAISES_ASSERT( m.coeffRef(0, 0) = 5 );
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(0, 0), 0.000001 );
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(0, 1), 0.000001 );
VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(2, 1), 0.000001 );
VERIFY_IS_APPROX( m.coeff(0, 2), 3.0 );
VERIFY_IS_APPROX( m.coeff(1, 2), 1.0 );
VERIFY_IS_APPROX( m.coeff(0, 3), 5.0 );
Matrix4d dm;
double r;
m.startFill(rows*cols);
for(int i=0; i<cols; i++) {
for(int j=0; j<rows; j++) {
r = rand();
m.fill(j, i) = r;
dm(j, i) = r;
}
}
m.endFill();
for(int i=0; i<cols; i++) {
for(int j=0; j<rows; j++) {
VERIFY_IS_APPROX( m.coeff(j, i), dm(j, i) );
}
}
}