opengl demo, now working:

- quaternion vs euler angles interpolation (though the Euler angle version looks a bit too bad)
 - navigation using either a mapping from 2D screen coordinates to 3D points on a sphere
   or the standard approach mapping mouse displacements as rotations around camera's axes.
This commit is contained in:
Gael Guennebaud 2008-09-09 23:17:14 +00:00
parent 146c9e4494
commit 5e9ee8863e
4 changed files with 171 additions and 82 deletions

View File

@ -205,18 +205,6 @@ void Camera::localTranslate(const Vector3f& t)
mViewIsUptodate = false;
}
void Camera::localRotate(float dTheta, float dPhi)
{
float dist = (position() - mTarget).norm();
setOrientation( AngleAxisf(dTheta, up())
* AngleAxisf(dPhi, right())
* orientation());
mTarget = position() + dist * direction();
mViewIsUptodate = false;
}
void Camera::updateViewMatrix(void) const
{
if(!mViewIsUptodate)

View File

@ -95,7 +95,6 @@ class Camera
void zoom(float d);
void localTranslate(const Eigen::Vector3f& t);
void localRotate(float dTheta, float dPhi);
/** Setup OpenGL matrices and viewport */
void activateGL(void);

View File

@ -37,32 +37,92 @@
#include <QRadioButton>
#include <QDockWidget>
#include <QPushButton>
#include <QGroupBox>
using namespace Eigen;
// generic linear interpolation method
template<typename T> T lerp(float t, const T& a, const T& b)
{
return a*(1-t) + b*t;
}
// quaternion slerp
template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b)
{ return a.slerp(t,b); }
template<> AngleAxisf lerp(float t, const AngleAxisf& a, const AngleAxisf& b)
{
return AngleAxisf(lerp(t,a.angle(),b.angle()),
lerp(t,a.axis(),b.axis()).normalized());
}
// linear interpolation of a frame using the type OrientationType
// to perform the interpolation of the orientations
template<typename OrientationType>
inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b)
{
return Frame(::lerp(alpha,a.position,b.position),
Quaternionf(::lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
return Frame(lerp(alpha,a.position,b.position),
Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
}
template<typename _Scalar> class EulerAngles
{
public:
enum { Dim = 3 };
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_angles;
public:
EulerAngles() {}
inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
inline EulerAngles(const QuaternionType& q) { *this = q; }
const Vector3& coeffs() const { return m_angles; }
Vector3& coeffs() { return m_angles; }
EulerAngles& operator=(const QuaternionType& q)
{
Matrix3 m = q.toRotationMatrix();
return *this = m;
}
EulerAngles& operator=(const Matrix3& m)
{
// mat = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
m_angles.coeffRef(1) = std::asin(m.coeff(0,2));
m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2));
m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0));
return *this;
}
Matrix3 toRotationMatrix(void) const
{
Vector3 c = m_angles.cwise().cos();
Vector3 s = m_angles.cwise().sin();
Matrix3 res;
res << c.y()*c.z(), -c.y()*s.z(), s.y(),
c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(),
-c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y();
return res;
}
operator QuaternionType() { return QuaternionType(toRotationMatrix()); }
};
// Euler angles slerp
template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b)
{
EulerAngles<float> res;
res.coeffs() = lerp(t, a.coeffs(), b.coeffs());
return res;
}
RenderingWidget::RenderingWidget()
{
mAnimate = false;
@ -158,7 +218,15 @@ void RenderingWidget::animate()
else
{
float s = (m_alpha - lo->first)/(hi->first - lo->first);
currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
if (mLerpMode==LerpEulerAngles)
currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second);
else if (mLerpMode==LerpQuaternion)
currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
else
{
std::cerr << "Invalid rotation interpolation mode (abort)\n";
exit(2);
}
currentFrame.orientation.coeffs().normalize();
}
@ -173,40 +241,40 @@ void RenderingWidget::keyPressEvent(QKeyEvent * e)
{
switch(e->key())
{
case Qt::Key_Up:
mCamera.zoom(2);
break;
case Qt::Key_Down:
mCamera.zoom(-2);
break;
// add a frame
case Qt::Key_G:
grabFrame();
break;
// clear the time line
case Qt::Key_C:
m_timeline.clear();
break;
// move the camera to initial pos
case Qt::Key_R:
resetCamera();
break;
// start/stop the animation
case Qt::Key_A:
if (mAnimate)
{
stopAnimation();
}
else
{
m_alpha = 0;
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000/30);
mAnimate = true;
}
break;
default:
break;
case Qt::Key_Up:
mCamera.zoom(2);
break;
case Qt::Key_Down:
mCamera.zoom(-2);
break;
// add a frame
case Qt::Key_G:
grabFrame();
break;
// clear the time line
case Qt::Key_C:
m_timeline.clear();
break;
// move the camera to initial pos
case Qt::Key_R:
resetCamera();
break;
// start/stop the animation
case Qt::Key_A:
if (mAnimate)
{
stopAnimation();
}
else
{
m_alpha = 0;
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000/30);
mAnimate = true;
}
break;
default:
break;
}
updateGL();
@ -266,6 +334,7 @@ void RenderingWidget::mouseMoveEvent(QMouseEvent* e)
float dx = float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth());
float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight());
// speedup the transformations
if(e->modifiers() & Qt::ShiftModifier)
{
dx *= 10.;
@ -276,16 +345,32 @@ void RenderingWidget::mouseMoveEvent(QMouseEvent* e)
{
case TM_ROTATE_AROUND:
case TM_LOCAL_ROTATE:
mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
if (mRotationMode==RotationStable)
{
// use the stable trackball implementation mapping
// the 2D coordinates to 3D points on a sphere.
mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
}
else
{
// standard approach mapping the x and y displacements as rotations
// around the camera's X and Y axes.
Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY())
* AngleAxisf(-dy*M_PI, Vector3f::UnitX());
if (mCurrentTrackingMode==TM_LOCAL_ROTATE)
mCamera.localRotate(q);
else
mCamera.rotateAroundTarget(q);
}
break;
case TM_ZOOM :
mCamera.zoom(dy*50);
mCamera.zoom(dy*100);
break;
case TM_FLY_Z :
mCamera.localTranslate(Vector3f(0, 0, -dy*100));
mCamera.localTranslate(Vector3f(0, 0, -dy*200));
break;
case TM_FLY_PAN :
mCamera.localTranslate(Vector3f(dx*100, dy*100, 0));
mCamera.localTranslate(Vector3f(dx*200, dy*200, 0));
break;
default:
break;
@ -486,51 +571,68 @@ QWidget* RenderingWidget::createNavigationControlWidget()
QWidget* panel = new QWidget();
QVBoxLayout* layout = new QVBoxLayout();
{
// navigation mode
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("turn around");
group->addButton(but, NavTurnAround);
layout->addWidget(but);
but = new QRadioButton("fly");
group->addButton(but, NavFly);
layout->addWidget(but);
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
}
{
QPushButton* but = new QPushButton("reset");
but->setToolTip("move the camera to initial position (with animation)");
layout->addWidget(but);
connect(but, SIGNAL(clicked()), this, SLOT(resetCamera()));
}
{
// navigation mode
QGroupBox* box = new QGroupBox("navigation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("turn around");
but->setToolTip("look around an object");
group->addButton(but, NavTurnAround);
boxLayout->addWidget(but);
but = new QRadioButton("fly");
but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)");
group->addButton(but, NavFly);
boxLayout->addWidget(but);
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// track ball, rotation mode
QGroupBox* box = new QGroupBox("rotation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("stable trackball");
group->addButton(but, RotationStable);
layout->addWidget(but);
boxLayout->addWidget(but);
but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere");
but = new QRadioButton("standard rotation");
group->addButton(but, RotationStandard);
layout->addWidget(but);
but->setEnabled(false);
boxLayout->addWidget(but);
but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes");
group->button(mRotationMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// interpolation mode
QGroupBox* box = new QGroupBox("spherical interpolation");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("quaternion slerp");
group->addButton(but, LerpQuaternion);
layout->addWidget(but);
boxLayout->addWidget(but);
but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations");
but = new QRadioButton("euler angles");
group->addButton(but, LerpEulerAngles);
layout->addWidget(but);
but->setEnabled(false);
boxLayout->addWidget(but);
but->setToolTip("use Euler angles to interpolate orientations");
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding));
panel->setLayout(layout);

View File

@ -40,9 +40,9 @@ void Trackball::track(const Vector2i& point2D)
float cos_angle = mLastPoint3D.dot(newPoint3D);
if ( ei_abs(cos_angle) < 1.0 )
{
float angle = acos(cos_angle);
float angle = 2. * acos(cos_angle);
if (mMode==Around)
mpCamera->rotateAroundTarget(Quaternionf(AngleAxisf(2.*angle, axis))); // *2 to speedup the rotation
mpCamera->rotateAroundTarget(Quaternionf(AngleAxisf(angle, axis)));
else
mpCamera->localRotate(Quaternionf(AngleAxisf(-angle, axis)));
}