mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
eigenize dogleg()
This commit is contained in:
parent
f793dbe45c
commit
5e8dee7a19
@ -1,8 +1,11 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
|
||||
const Scalar *diag, const Scalar *qtb, Scalar delta, Scalar *x,
|
||||
Scalar *wa1, Scalar *wa2)
|
||||
void ei_dogleg(
|
||||
Matrix< Scalar, Dynamic, 1 > &r__,
|
||||
const Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
const Matrix< Scalar, Dynamic, 1 > &qtb,
|
||||
Scalar delta,
|
||||
Matrix< Scalar, Dynamic, 1 > &x)
|
||||
{
|
||||
/* Local variables */
|
||||
int i, j, k, l, jj, jp1;
|
||||
@ -10,30 +13,26 @@ void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
|
||||
Scalar gnorm, qnorm;
|
||||
Scalar sgnorm;
|
||||
|
||||
/* Parameter adjustments */
|
||||
--wa2;
|
||||
--wa1;
|
||||
--x;
|
||||
--qtb;
|
||||
--diag;
|
||||
--r__;
|
||||
|
||||
/* Function Body */
|
||||
const Scalar epsmch = epsilon<Scalar>();
|
||||
const int n = diag.size();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
|
||||
assert(n==qtb.size());
|
||||
assert(n==x.size());
|
||||
|
||||
/* first, calculate the gauss-newton direction. */
|
||||
|
||||
jj = n * (n + 1) / 2 + 1;
|
||||
for (k = 1; k <= n; ++k) {
|
||||
j = n - k + 1;
|
||||
jj = n * (n + 1) / 2;
|
||||
for (k = 0; k < n; ++k) {
|
||||
j = n - k - 1;
|
||||
jp1 = j + 1;
|
||||
jj -= k;
|
||||
jj -= k+1;
|
||||
l = jj + 1;
|
||||
sum = 0.;
|
||||
if (n < jp1) {
|
||||
goto L20;
|
||||
}
|
||||
for (i = jp1; i <= n; ++i) {
|
||||
for (i = jp1; i < n; ++i) {
|
||||
sum += r__[l] * x[i];
|
||||
++l;
|
||||
/* L10: */
|
||||
@ -44,7 +43,7 @@ L20:
|
||||
goto L40;
|
||||
}
|
||||
l = j;
|
||||
for (i = 1; i <= j; ++i) {
|
||||
for (i = 0; i <= j; ++i) {
|
||||
/* Computing MAX */
|
||||
temp = std::max(temp,ei_abs(r__[l]));
|
||||
l = l + n - i;
|
||||
@ -61,12 +60,12 @@ L40:
|
||||
|
||||
/* test whether the gauss-newton direction is acceptable. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] = 0.;
|
||||
wa2[j] = diag[j] * x[j];
|
||||
/* L60: */
|
||||
}
|
||||
qnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
|
||||
qnorm = wa2.stableNorm();
|
||||
if (qnorm <= delta) {
|
||||
/* goto L140; */
|
||||
return;
|
||||
@ -75,10 +74,10 @@ L40:
|
||||
/* the gauss-newton direction is not acceptable. */
|
||||
/* next, calculate the scaled gradient direction. */
|
||||
|
||||
l = 1;
|
||||
for (j = 1; j <= n; ++j) {
|
||||
l = 0;
|
||||
for (j = 0; j < n; ++j) {
|
||||
temp = qtb[j];
|
||||
for (i = j; i <= n; ++i) {
|
||||
for (i = j; i < n; ++i) {
|
||||
wa1[i] += r__[l] * temp;
|
||||
++l;
|
||||
/* L70: */
|
||||
@ -90,7 +89,7 @@ L40:
|
||||
/* calculate the norm of the scaled gradient and test for */
|
||||
/* the special case in which the scaled gradient is zero. */
|
||||
|
||||
gnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa1[1],n).stableNorm();
|
||||
gnorm = wa1.stableNorm();
|
||||
sgnorm = 0.;
|
||||
alpha = delta / qnorm;
|
||||
if (gnorm == 0.) {
|
||||
@ -100,14 +99,14 @@ L40:
|
||||
/* calculate the point along the scaled gradient */
|
||||
/* at which the quadratic is minimized. */
|
||||
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] = wa1[j] / gnorm / diag[j];
|
||||
/* L90: */
|
||||
}
|
||||
l = 1;
|
||||
for (j = 1; j <= n; ++j) {
|
||||
l = 0;
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = 0.;
|
||||
for (i = j; i <= n; ++i) {
|
||||
for (i = j; i < n; ++i) {
|
||||
sum += r__[l] * wa1[i];
|
||||
++l;
|
||||
/* L100: */
|
||||
@ -115,7 +114,7 @@ L40:
|
||||
wa2[j] = sum;
|
||||
/* L110: */
|
||||
}
|
||||
temp = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
|
||||
temp = wa2.stableNorm();
|
||||
sgnorm = gnorm / temp / temp;
|
||||
|
||||
/* test whether the scaled gradient direction is acceptable. */
|
||||
@ -129,7 +128,7 @@ L40:
|
||||
/* finally, calculate the point along the dogleg */
|
||||
/* at which the quadratic is minimized. */
|
||||
|
||||
bnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&qtb[1],n).stableNorm();
|
||||
bnorm = qtb.stableNorm();
|
||||
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
|
||||
/* Computing 2nd power */
|
||||
temp = temp - delta / qnorm * ei_abs2(sgnorm / delta) + ei_sqrt(ei_abs2(temp - delta / qnorm) + (1.-ei_abs2(delta / qnorm)) * (1.-ei_abs2(sgnorm / delta)));
|
||||
@ -141,14 +140,10 @@ L120:
|
||||
/* direction and the scaled gradient direction. */
|
||||
|
||||
temp = (1. - alpha) * std::min(sgnorm,delta);
|
||||
for (j = 1; j <= n; ++j) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
x[j] = temp * wa1[j] + alpha * x[j];
|
||||
/* L130: */
|
||||
}
|
||||
/* L140: */
|
||||
return;
|
||||
|
||||
/* last card of subroutine dogleg. */
|
||||
|
||||
} /* dogleg_ */
|
||||
}
|
||||
|
||||
|
@ -209,7 +209,7 @@ L190:
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
ei_dogleg<Scalar>(n, R.data(), lr, diag.data(), qtf.data(), delta, wa1.data(), wa2.data(), wa3.data());
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
|
@ -198,7 +198,7 @@ L190:
|
||||
|
||||
/* determine the direction p. */
|
||||
|
||||
ei_dogleg<Scalar>(n, R.data(), lr, diag.data(), qtf.data(), delta, wa1.data(), wa2.data(), wa3.data());
|
||||
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user