eigenize dogleg()

This commit is contained in:
Thomas Capricelli 2009-08-23 21:39:47 +02:00
parent f793dbe45c
commit 5e8dee7a19
3 changed files with 33 additions and 38 deletions

View File

@ -1,8 +1,11 @@
template <typename Scalar>
void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
const Scalar *diag, const Scalar *qtb, Scalar delta, Scalar *x,
Scalar *wa1, Scalar *wa2)
template <typename Scalar>
void ei_dogleg(
Matrix< Scalar, Dynamic, 1 > &r__,
const Matrix< Scalar, Dynamic, 1 > &diag,
const Matrix< Scalar, Dynamic, 1 > &qtb,
Scalar delta,
Matrix< Scalar, Dynamic, 1 > &x)
{
/* Local variables */
int i, j, k, l, jj, jp1;
@ -10,30 +13,26 @@ void ei_dogleg(int n, const Scalar *r__, int /* lr*/ ,
Scalar gnorm, qnorm;
Scalar sgnorm;
/* Parameter adjustments */
--wa2;
--wa1;
--x;
--qtb;
--diag;
--r__;
/* Function Body */
const Scalar epsmch = epsilon<Scalar>();
const int n = diag.size();
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n);
assert(n==qtb.size());
assert(n==x.size());
/* first, calculate the gauss-newton direction. */
jj = n * (n + 1) / 2 + 1;
for (k = 1; k <= n; ++k) {
j = n - k + 1;
jj = n * (n + 1) / 2;
for (k = 0; k < n; ++k) {
j = n - k - 1;
jp1 = j + 1;
jj -= k;
jj -= k+1;
l = jj + 1;
sum = 0.;
if (n < jp1) {
goto L20;
}
for (i = jp1; i <= n; ++i) {
for (i = jp1; i < n; ++i) {
sum += r__[l] * x[i];
++l;
/* L10: */
@ -44,7 +43,7 @@ L20:
goto L40;
}
l = j;
for (i = 1; i <= j; ++i) {
for (i = 0; i <= j; ++i) {
/* Computing MAX */
temp = std::max(temp,ei_abs(r__[l]));
l = l + n - i;
@ -61,12 +60,12 @@ L40:
/* test whether the gauss-newton direction is acceptable. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
wa1[j] = 0.;
wa2[j] = diag[j] * x[j];
/* L60: */
}
qnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
qnorm = wa2.stableNorm();
if (qnorm <= delta) {
/* goto L140; */
return;
@ -75,10 +74,10 @@ L40:
/* the gauss-newton direction is not acceptable. */
/* next, calculate the scaled gradient direction. */
l = 1;
for (j = 1; j <= n; ++j) {
l = 0;
for (j = 0; j < n; ++j) {
temp = qtb[j];
for (i = j; i <= n; ++i) {
for (i = j; i < n; ++i) {
wa1[i] += r__[l] * temp;
++l;
/* L70: */
@ -90,7 +89,7 @@ L40:
/* calculate the norm of the scaled gradient and test for */
/* the special case in which the scaled gradient is zero. */
gnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&wa1[1],n).stableNorm();
gnorm = wa1.stableNorm();
sgnorm = 0.;
alpha = delta / qnorm;
if (gnorm == 0.) {
@ -100,14 +99,14 @@ L40:
/* calculate the point along the scaled gradient */
/* at which the quadratic is minimized. */
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
wa1[j] = wa1[j] / gnorm / diag[j];
/* L90: */
}
l = 1;
for (j = 1; j <= n; ++j) {
l = 0;
for (j = 0; j < n; ++j) {
sum = 0.;
for (i = j; i <= n; ++i) {
for (i = j; i < n; ++i) {
sum += r__[l] * wa1[i];
++l;
/* L100: */
@ -115,7 +114,7 @@ L40:
wa2[j] = sum;
/* L110: */
}
temp = Map< Matrix< Scalar, Dynamic, 1 > >(&wa2[1],n).stableNorm();
temp = wa2.stableNorm();
sgnorm = gnorm / temp / temp;
/* test whether the scaled gradient direction is acceptable. */
@ -129,7 +128,7 @@ L40:
/* finally, calculate the point along the dogleg */
/* at which the quadratic is minimized. */
bnorm = Map< Matrix< Scalar, Dynamic, 1 > >(&qtb[1],n).stableNorm();
bnorm = qtb.stableNorm();
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
/* Computing 2nd power */
temp = temp - delta / qnorm * ei_abs2(sgnorm / delta) + ei_sqrt(ei_abs2(temp - delta / qnorm) + (1.-ei_abs2(delta / qnorm)) * (1.-ei_abs2(sgnorm / delta)));
@ -141,14 +140,10 @@ L120:
/* direction and the scaled gradient direction. */
temp = (1. - alpha) * std::min(sgnorm,delta);
for (j = 1; j <= n; ++j) {
for (j = 0; j < n; ++j) {
x[j] = temp * wa1[j] + alpha * x[j];
/* L130: */
}
/* L140: */
return;
/* last card of subroutine dogleg. */
} /* dogleg_ */
}

View File

@ -209,7 +209,7 @@ L190:
/* determine the direction p. */
ei_dogleg<Scalar>(n, R.data(), lr, diag.data(), qtf.data(), delta, wa1.data(), wa2.data(), wa3.data());
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */

View File

@ -198,7 +198,7 @@ L190:
/* determine the direction p. */
ei_dogleg<Scalar>(n, R.data(), lr, diag.data(), qtf.data(), delta, wa1.data(), wa2.data(), wa3.data());
ei_dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */