Use the proper index type

This commit is contained in:
Benoit Steiner 2014-10-30 17:49:39 -07:00
parent debc97821c
commit 5e62427e22

View File

@ -149,26 +149,26 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable>
// GPU: the evaluation of the expression is offloaded to a GPU.
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <typename Evaluator>
template <typename Evaluator, typename Index>
__global__ void
__launch_bounds__(1024)
EigenMetaKernel(Evaluator eval, unsigned int size) {
EigenMetaKernel(Evaluator eval, Index size) {
const int first_index = blockIdx.x * blockDim.x + threadIdx.x;
const int step_size = blockDim.x * gridDim.x;
const Index first_index = blockIdx.x * blockDim.x + threadIdx.x;
const Index step_size = blockDim.x * gridDim.x;
if (!Evaluator::PacketAccess || !Evaluator::IsAligned) {
// Use the scalar path
for (int i = first_index; i < size; i += step_size) {
for (Index i = first_index; i < size; i += step_size) {
eval.evalScalar(i);
}
}
else {
// Use the vector path
const int PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
const int vectorized_step_size = step_size * PacketSize;
const int vectorized_size = (size / PacketSize) * PacketSize;
int i = first_index * PacketSize;
const Index PacketSize = unpacket_traits<typename Evaluator::PacketReturnType>::size;
const Index vectorized_step_size = step_size * PacketSize;
const Index vectorized_size = (size / PacketSize) * PacketSize;
Index i = first_index * PacketSize;
for ( ; i < vectorized_size; i += vectorized_step_size) {
eval.evalPacket(i);
}
@ -193,7 +193,7 @@ class TensorExecutor<Expression, GpuDevice, Vectorizable>
const int block_size = maxCudaThreadsPerBlock();
const Index size = array_prod(evaluator.dimensions());
EigenMetaKernel<TensorEvaluator<Expression, GpuDevice> > <<<num_blocks, block_size, 0, device.stream()>>>(evaluator, size);
EigenMetaKernel<TensorEvaluator<Expression, GpuDevice>, Index><<<num_blocks, block_size, 0, device.stream()>>>(evaluator, size);
assert(cudaGetLastError() == cudaSuccess);
}
evaluator.cleanup();