mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-18 19:30:38 +08:00
Enable custom scalar types in some unit tests.
This commit is contained in:
parent
87d480d785
commit
5e4dda8a12
@ -243,11 +243,13 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
// check matrices with a wide spectrum
|
||||
if(rows>=3)
|
||||
{
|
||||
using std::pow;
|
||||
using std::sqrt;
|
||||
RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
|
||||
Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows);
|
||||
for(Index k=0; k<rows; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
|
||||
// Make sure a solution exists:
|
||||
vecX.setRandom();
|
||||
@ -263,7 +265,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar large_tol = std::sqrt(test_precision<RealScalar>());
|
||||
RealScalar large_tol = sqrt(test_precision<RealScalar>());
|
||||
VERIFY((A * vecX).isApprox(vecB, large_tol));
|
||||
|
||||
++g_test_level;
|
||||
|
@ -459,13 +459,13 @@ inline bool test_isApprox(const Type1& a, const Type2& b)
|
||||
|
||||
// get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or expressions
|
||||
template<typename T>
|
||||
typename NumTraits<typename T::Scalar>::Real get_test_precision(const typename T::Scalar* = 0)
|
||||
typename NumTraits<typename T::Scalar>::Real get_test_precision(const T*, const typename T::Scalar* = 0)
|
||||
{
|
||||
return test_precision<typename NumTraits<typename T::Scalar>::Real>();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
typename NumTraits<T>::Real get_test_precision(typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0)
|
||||
typename NumTraits<T>::Real get_test_precision(const T*,typename internal::enable_if<internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* = 0)
|
||||
{
|
||||
return test_precision<typename NumTraits<T>::Real>();
|
||||
}
|
||||
@ -477,7 +477,7 @@ inline bool verifyIsApprox(const Type1& a, const Type2& b)
|
||||
bool ret = test_isApprox(a,b);
|
||||
if(!ret)
|
||||
{
|
||||
std::cerr << "Difference too large wrt tolerance " << get_test_precision<Type1>() << ", relative error is: " << test_relative_error(a,b) << std::endl;
|
||||
std::cerr << "Difference too large wrt tolerance " << get_test_precision(static_cast<Type1*>(0)) << ", relative error is: " << test_relative_error(a,b) << std::endl;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
@ -93,6 +93,7 @@ void cod_fixedsize() {
|
||||
|
||||
template<typename MatrixType> void qr()
|
||||
{
|
||||
using std::sqrt;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
|
||||
@ -120,14 +121,14 @@ template<typename MatrixType> void qr()
|
||||
// Verify that the absolute value of the diagonal elements in R are
|
||||
// non-increasing until they reach the singularity threshold.
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
RealScalar x = numext::abs(r(i, i));
|
||||
RealScalar y = numext::abs(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (!test_isApproxOrLessThan(y, x)) {
|
||||
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << rank
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
@ -144,6 +145,8 @@ template<typename MatrixType> void qr()
|
||||
|
||||
template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
@ -169,14 +172,14 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
// Verify that the absolute value of the diagonal elements in R are
|
||||
// non-increasing until they reache the singularity threshold.
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
RealScalar x = numext::abs(r(i, i));
|
||||
RealScalar y = numext::abs(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (!test_isApproxOrLessThan(y, x)) {
|
||||
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << rank
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
@ -194,6 +197,8 @@ template<typename MatrixType, int Cols2> void qr_fixedsize()
|
||||
// page 3 for more detail.
|
||||
template<typename MatrixType> void qr_kahan_matrix()
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
@ -215,14 +220,14 @@ template<typename MatrixType> void qr_kahan_matrix()
|
||||
MatrixType r = qr.matrixQR().template triangularView<Upper>();
|
||||
|
||||
RealScalar threshold =
|
||||
std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
|
||||
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
|
||||
RealScalar x = (std::abs)(r(i, i));
|
||||
RealScalar y = (std::abs)(r(i + 1, i + 1));
|
||||
RealScalar x = numext::abs(r(i, i));
|
||||
RealScalar y = numext::abs(r(i + 1, i + 1));
|
||||
if (x < threshold && y < threshold) continue;
|
||||
if (!test_isApproxOrLessThan(y, x)) {
|
||||
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
|
||||
std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl;
|
||||
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
|
||||
}
|
||||
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
|
||||
<< ", threshold=" << threshold << std::endl;
|
||||
|
@ -10,6 +10,7 @@
|
||||
template<typename MatrixType>
|
||||
void svd_fill_random(MatrixType &m, int Option = 0)
|
||||
{
|
||||
using std::pow;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
@ -18,7 +19,7 @@ void svd_fill_random(MatrixType &m, int Option = 0)
|
||||
s = internal::random<RealScalar>(1,s);
|
||||
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
|
||||
for(Index k=0; k<diagSize; ++k)
|
||||
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s));
|
||||
|
||||
bool dup = internal::random<int>(0,10) < 3;
|
||||
bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors
|
||||
|
Loading…
x
Reference in New Issue
Block a user