C++11: add template metaprogramming helpers

Create a new directory CXX11 under unsupported/Eigen that contains code
that requires C++11. In that directory, add a few generic templates
useful for any module relying on C++11. These templates may be included
with #include <[unsupported/]Eigen/CXX11/Core>. At the moment, this
will only provide templates in the Eigen::internal namespace.
This commit is contained in:
Christian Seiler 2013-11-14 22:27:06 +01:00
parent e59b38abef
commit 5e28c41549
5 changed files with 1000 additions and 0 deletions

View File

@ -0,0 +1,41 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_CORE_MODULE
#define EIGEN_CXX11_CORE_MODULE
#include <Eigen/Core>
#include <Eigen/src/Core/util/DisableStupidWarnings.h>
/** \defgroup CXX11_Core_Module C++11 Core Module
*
* This module provides common core features for all modules that
* explicitly depend on C++11. Currently, this is only the Tensor
* module. Note that at this stage, you should not need to include
* this module directly.
*
* \code
* #include <Eigen/CXX11/Core>
* \endcode
*/
#include <array>
#include "src/Core/util/CXX11Workarounds.h"
#include "src/Core/util/CXX11Meta.h"
#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
#endif // EIGEN_CXX11_CORE_MODULE
/*
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
*/

View File

@ -0,0 +1,504 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11META_H
#define EIGEN_CXX11META_H
namespace Eigen {
namespace internal {
/** \internal
* \file CXX11/Core/util/CXX11Meta.h
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
* This file expands upon Core/util/Meta.h and adds support for C++11 specific features.
*/
template<typename... tt>
struct type_list { constexpr static int count = sizeof...(tt); };
template<typename t, typename... tt>
struct type_list<t, tt...> { constexpr static int count = sizeof...(tt) + 1; typedef t first_type; };
template<typename T, T... nn>
struct numeric_list { constexpr static std::size_t count = sizeof...(nn); };
template<typename T, T n, T... nn>
struct numeric_list<T, n, nn...> { constexpr static std::size_t count = sizeof...(nn) + 1; constexpr static T first_value = n; };
/* numeric list constructors
*
* equivalencies:
* constructor result
* typename gen_numeric_list<int, 5>::type numeric_list<int, 0,1,2,3,4>
* typename gen_numeric_list_reversed<int, 5>::type numeric_list<int, 4,3,2,1,0>
* typename gen_numeric_list_swapped_pair<int, 5,1,2>::type numeric_list<int, 0,2,1,3,4>
* typename gen_numeric_list_repeated<int, 0, 5>::type numeric_list<int, 0,0,0,0,0>
*/
template<typename T, std::size_t n, T... ii> struct gen_numeric_list : gen_numeric_list<T, n-1, n-1, ii...> {};
template<typename T, T... ii> struct gen_numeric_list<T, 0, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T... ii> struct gen_numeric_list_reversed : gen_numeric_list_reversed<T, n-1, ii..., n-1> {};
template<typename T, T... ii> struct gen_numeric_list_reversed<T, 0, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T a, T b, T... ii> struct gen_numeric_list_swapped_pair : gen_numeric_list_swapped_pair<T, n-1, a, b, (n-1) == a ? b : ((n-1) == b ? a : (n-1)), ii...> {};
template<typename T, T a, T b, T... ii> struct gen_numeric_list_swapped_pair<T, 0, a, b, ii...> { typedef numeric_list<T, ii...> type; };
template<typename T, std::size_t n, T V, T... nn> struct gen_numeric_list_repeated : gen_numeric_list_repeated<T, n-1, V, V, nn...> {};
template<typename T, T V, T... nn> struct gen_numeric_list_repeated<T, 0, V, nn...> { typedef numeric_list<T, nn...> type; };
/* list manipulation: concatenate */
template<class a, class b> struct concat;
template<typename... as, typename... bs> struct concat<type_list<as...>, type_list<bs...>> { typedef type_list<as..., bs...> type; };
template<typename T, T... as, T... bs> struct concat<numeric_list<T, as...>, numeric_list<T, bs...> > { typedef numeric_list<T, as..., bs...> type; };
template<typename... p> struct mconcat;
template<typename a> struct mconcat<a> { typedef a type; };
template<typename a, typename b> struct mconcat<a, b> : concat<a, b> {};
template<typename a, typename b, typename... cs> struct mconcat<a, b, cs...> : concat<a, typename mconcat<b, cs...>::type> {};
/* list manipulation: extract slices */
template<int n, typename x> struct take;
template<int n, typename a, typename... as> struct take<n, type_list<a, as...>> : concat<type_list<a>, typename take<n-1, type_list<as...>>::type> {};
template<int n> struct take<n, type_list<>> { typedef type_list<> type; };
template<typename a, typename... as> struct take<0, type_list<a, as...>> { typedef type_list<> type; };
template<> struct take<0, type_list<>> { typedef type_list<> type; };
template<typename T, int n, T a, T... as> struct take<n, numeric_list<T, a, as...>> : concat<numeric_list<T, a>, typename take<n-1, numeric_list<T, as...>>::type> {};
template<typename T, int n> struct take<n, numeric_list<T>> { typedef numeric_list<T> type; };
template<typename T, T a, T... as> struct take<0, numeric_list<T, a, as...>> { typedef numeric_list<T> type; };
template<typename T> struct take<0, numeric_list<T>> { typedef numeric_list<T> type; };
template<typename T, int n, T... ii> struct h_skip_helper_numeric;
template<typename T, int n, T i, T... ii> struct h_skip_helper_numeric<T, n, i, ii...> : h_skip_helper_numeric<T, n-1, ii...> {};
template<typename T, T i, T... ii> struct h_skip_helper_numeric<T, 0, i, ii...> { typedef numeric_list<T, i, ii...> type; };
template<typename T, int n> struct h_skip_helper_numeric<T, n> { typedef numeric_list<T> type; };
template<typename T> struct h_skip_helper_numeric<T, 0> { typedef numeric_list<T> type; };
template<int n, typename... tt> struct h_skip_helper_type;
template<int n, typename t, typename... tt> struct h_skip_helper_type<n, t, tt...> : h_skip_helper_type<n-1, tt...> {};
template<typename t, typename... tt> struct h_skip_helper_type<0, t, tt...> { typedef type_list<t, tt...> type; };
template<int n> struct h_skip_helper_type<n> { typedef type_list<> type; };
template<> struct h_skip_helper_type<0> { typedef type_list<> type; };
template<int n>
struct h_skip {
template<typename T, T... ii>
constexpr static inline typename h_skip_helper_numeric<T, n, ii...>::type helper(numeric_list<T, ii...>) { return typename h_skip_helper_numeric<T, n, ii...>::type(); }
template<typename... tt>
constexpr static inline typename h_skip_helper_type<n, tt...>::type helper(type_list<tt...>) { return typename h_skip_helper_type<n, tt...>::type(); }
};
template<int n, typename a> struct skip { typedef decltype(h_skip<n>::helper(a())) type; };
template<int start, int count, typename a> struct slice : take<count, typename skip<start, a>::type> {};
/* list manipulation: retrieve single element from list */
template<int n, typename x> struct get;
template<int n, typename a, typename... as> struct get<n, type_list<a, as...>> : get<n-1, type_list<as...>> {};
template<typename a, typename... as> struct get<0, type_list<a, as...>> { typedef a type; };
template<int n EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, as)> struct get<n, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(as)>> { static_assert((n - n) < 0, "meta-template get: The element to extract from a list must be smaller than the size of the list."); };
template<typename T, int n, T a, T... as> struct get<n, numeric_list<T, a, as...>> : get<n-1, numeric_list<T, as...>> {};
template<typename T, T a, T... as> struct get<0, numeric_list<T, a, as...>> { constexpr static int value = a; };
template<typename T, int n EIGEN_TPL_PP_SPEC_HACK_DEFC(T, as)> struct get<n, numeric_list<T EIGEN_TPL_PP_SPEC_HACK_USEC(as)>> { static_assert((n - n) < 0, "meta-template get: The element to extract from a list must be smaller than the size of the list."); };
/* always get type, regardless of dummy; good for parameter pack expansion */
template<typename T, T dummy, typename t> struct id_numeric { typedef t type; };
template<typename dummy, typename t> struct id_type { typedef t type; };
/* equality checking, flagged version */
template<typename a, typename b> struct is_same_gf : is_same<a, b> { constexpr static int global_flags = 0; };
/* apply_op to list */
template<
bool from_left, // false
template<typename, typename> class op,
typename additional_param,
typename... values
>
struct h_apply_op_helper { typedef type_list<typename op<values, additional_param>::type...> type; };
template<
template<typename, typename> class op,
typename additional_param,
typename... values
>
struct h_apply_op_helper<true, op, additional_param, values...> { typedef type_list<typename op<additional_param, values>::type...> type; };
template<
bool from_left,
template<typename, typename> class op,
typename additional_param
>
struct h_apply_op
{
template<typename... values>
constexpr static typename h_apply_op_helper<from_left, op, additional_param, values...>::type helper(type_list<values...>)
{ return typename h_apply_op_helper<from_left, op, additional_param, values...>::type(); }
};
template<
template<typename, typename> class op,
typename additional_param,
typename a
>
struct apply_op_from_left { typedef decltype(h_apply_op<true, op, additional_param>::helper(a())) type; };
template<
template<typename, typename> class op,
typename additional_param,
typename a
>
struct apply_op_from_right { typedef decltype(h_apply_op<false, op, additional_param>::helper(a())) type; };
/* see if an element is in a list */
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
bool last_check_positive = false
>
struct contained_in_list;
template<
template<typename, typename> class test,
typename check_against,
typename h_list
>
struct contained_in_list<test, check_against, h_list, true>
{
constexpr static bool value = true;
};
template<
template<typename, typename> class test,
typename check_against,
typename a,
typename... as
>
struct contained_in_list<test, check_against, type_list<a, as...>, false> : contained_in_list<test, check_against, type_list<as...>, test<check_against, a>::value> {};
template<
template<typename, typename> class test,
typename check_against
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty)
>
struct contained_in_list<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, false> { constexpr static bool value = false; };
/* see if an element is in a list and check for global flags */
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
int default_flags = 0,
bool last_check_positive = false,
int last_check_flags = default_flags
>
struct contained_in_list_gf;
template<
template<typename, typename> class test,
typename check_against,
typename h_list,
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, h_list, default_flags, true, last_check_flags>
{
constexpr static bool value = true;
constexpr static int global_flags = last_check_flags;
};
template<
template<typename, typename> class test,
typename check_against,
typename a,
typename... as,
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, type_list<a, as...>, default_flags, false, last_check_flags> : contained_in_list_gf<test, check_against, type_list<as...>, default_flags, test<check_against, a>::value, test<check_against, a>::global_flags> {};
template<
template<typename, typename> class test,
typename check_against
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty),
int default_flags,
int last_check_flags
>
struct contained_in_list_gf<test, check_against, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, default_flags, false, last_check_flags> { constexpr static bool value = false; constexpr static int global_flags = default_flags; };
/* generic reductions */
template<
typename Reducer,
typename... Ts
> struct reduce;
template<
typename Reducer,
typename A,
typename... Ts
> struct reduce<Reducer, A, Ts...>
{
constexpr static inline A run(A a, Ts...) { return a; }
};
template<
typename Reducer,
typename A,
typename B,
typename... Ts
> struct reduce<Reducer, A, B, Ts...>
{
constexpr static inline auto run(A a, B b, Ts... ts) -> decltype(Reducer::run(a, reduce<Reducer, B, Ts...>::run(b, ts...))) {
return Reducer::run(a, reduce<Reducer, B, Ts...>::run(b, ts...));
}
};
/* generic binary operations */
struct sum_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a + b) { return a + b; } };
struct product_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a * b) { return a * b; } };
struct logical_and_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a && b) { return a && b; } };
struct logical_or_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a || b) { return a || b; } };
struct equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a == b) { return a == b; } };
struct not_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a != b) { return a != b; } };
struct lesser_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } };
struct lesser_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a <= b) { return a <= b; } };
struct greater_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a < b) { return a < b; } };
struct greater_equal_op { template<typename A, typename B> constexpr static inline auto run(A a, B b) -> decltype(a >= b) { return a >= b; } };
/* generic unary operations */
struct not_op { template<typename A> constexpr static inline auto run(A a) -> decltype(!a) { return !a; } };
struct negation_op { template<typename A> constexpr static inline auto run(A a) -> decltype(-a) { return -a; } };
struct greater_equal_zero_op { template<typename A> constexpr static inline auto run(A a) -> decltype(a >= 0) { return a >= 0; } };
/* reductions for lists */
// using auto -> return value spec makes ICC 13.0 and 13.1 crash here, so we have to hack it
// together in front... (13.0 doesn't work with array_prod/array_reduce/... anyway, but 13.1
// does...
template<typename... Ts>
constexpr inline decltype(reduce<product_op, Ts...>::run((*((Ts*)0))...)) arg_prod(Ts... ts)
{
return reduce<product_op, Ts...>::run(ts...);
}
template<typename... Ts>
constexpr inline decltype(reduce<sum_op, Ts...>::run((*((Ts*)0))...)) arg_sum(Ts... ts)
{
return reduce<sum_op, Ts...>::run(ts...);
}
/* reverse arrays */
template<typename Array, int... n>
constexpr inline Array h_array_reverse(Array arr, numeric_list<int, n...>)
{
return {{std_array_get<sizeof...(n) - n - 1>(arr)...}};
}
template<typename T, std::size_t N>
constexpr inline std::array<T, N> array_reverse(std::array<T, N> arr)
{
return h_array_reverse(arr, typename gen_numeric_list<int, N>::type());
}
/* generic array reductions */
// can't reuse standard reduce() interface above because Intel's Compiler
// *really* doesn't like it, so we just reimplement the stuff
// (start from N - 1 and work down to 0 because specialization for
// n == N - 1 also doesn't work in Intel's compiler, so it goes into
// an infinite loop)
template<typename Reducer, typename T, std::size_t N, std::size_t n = N - 1>
struct h_array_reduce {
constexpr static inline auto run(std::array<T, N> arr) -> decltype(Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr), std_array_get<n>(arr)))
{
return Reducer::run(h_array_reduce<Reducer, T, N, n - 1>::run(arr), std_array_get<n>(arr));
}
};
template<typename Reducer, typename T, std::size_t N>
struct h_array_reduce<Reducer, T, N, 0>
{
constexpr static inline T run(std::array<T, N> arr)
{
return std_array_get<0>(arr);
}
};
template<typename Reducer, typename T, std::size_t N>
constexpr inline auto array_reduce(std::array<T, N> arr) -> decltype(h_array_reduce<Reducer, T, N>::run(arr))
{
return h_array_reduce<Reducer, T, N>::run(arr);
}
/* standard array reductions */
template<typename T, std::size_t N>
constexpr inline auto array_sum(std::array<T, N> arr) -> decltype(array_reduce<sum_op, T, N>(arr))
{
return array_reduce<sum_op, T, N>(arr);
}
template<typename T, std::size_t N>
constexpr inline auto array_prod(std::array<T, N> arr) -> decltype(array_reduce<product_op, T, N>(arr))
{
return array_reduce<product_op, T, N>(arr);
}
/* zip an array */
template<typename Op, typename A, typename B, std::size_t N, int... n>
constexpr inline std::array<decltype(Op::run(A(), B())),N> h_array_zip(std::array<A, N> a, std::array<B, N> b, numeric_list<int, n...>)
{
return std::array<decltype(Op::run(A(), B())),N>{{ Op::run(std_array_get<n>(a), std_array_get<n>(b))... }};
}
template<typename Op, typename A, typename B, std::size_t N>
constexpr inline std::array<decltype(Op::run(A(), B())),N> array_zip(std::array<A, N> a, std::array<B, N> b)
{
return h_array_zip<Op>(a, b, typename gen_numeric_list<int, N>::type());
}
/* zip an array and reduce the result */
template<typename Reducer, typename Op, typename A, typename B, std::size_t N, int... n>
constexpr inline auto h_array_zip_and_reduce(std::array<A, N> a, std::array<B, N> b, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(std_array_get<n>(a), std_array_get<n>(b))...))
{
return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A(), B()))>::type...>::run(Op::run(std_array_get<n>(a), std_array_get<n>(b))...);
}
template<typename Reducer, typename Op, typename A, typename B, std::size_t N>
constexpr inline auto array_zip_and_reduce(std::array<A, N> a, std::array<B, N> b) -> decltype(h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type()))
{
return h_array_zip_and_reduce<Reducer, Op, A, B, N>(a, b, typename gen_numeric_list<int, N>::type());
}
/* apply stuff to an array */
template<typename Op, typename A, std::size_t N, int... n>
constexpr inline std::array<decltype(Op::run(A())),N> h_array_apply(std::array<A, N> a, numeric_list<int, n...>)
{
return std::array<decltype(Op::run(A())),N>{{ Op::run(std_array_get<n>(a))... }};
}
template<typename Op, typename A, std::size_t N>
constexpr inline std::array<decltype(Op::run(A())),N> array_apply(std::array<A, N> a)
{
return h_array_apply<Op>(a, typename gen_numeric_list<int, N>::type());
}
/* apply stuff to an array and reduce */
template<typename Reducer, typename Op, typename A, std::size_t N, int... n>
constexpr inline auto h_array_apply_and_reduce(std::array<A, N> arr, numeric_list<int, n...>) -> decltype(reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(std_array_get<n>(arr))...))
{
return reduce<Reducer, typename id_numeric<int,n,decltype(Op::run(A()))>::type...>::run(Op::run(std_array_get<n>(arr))...);
}
template<typename Reducer, typename Op, typename A, std::size_t N>
constexpr inline auto array_apply_and_reduce(std::array<A, N> a) -> decltype(h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type()))
{
return h_array_apply_and_reduce<Reducer, Op, A, N>(a, typename gen_numeric_list<int, N>::type());
}
/* repeat a value n times (and make an array out of it
* usage:
* std::array<int, 16> = repeat<16>(42);
*/
template<int n>
struct h_repeat
{
template<typename t, int... ii>
constexpr static inline std::array<t, n> run(t v, numeric_list<int, ii...>)
{
return {{ typename id_numeric<int, ii, t>::type(v)... }};
}
};
template<int n, typename t>
constexpr std::array<t, n> repeat(t v) { return h_repeat<n>::run(v, typename gen_numeric_list<int, n>::type()); }
/* instantiate a class by a C-style array */
template<class InstType, typename ArrType, std::size_t N, bool Reverse, typename... Ps>
struct h_instantiate_by_c_array;
template<class InstType, typename ArrType, std::size_t N, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, N, false, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, Ps..., ArrType>::run(arr + 1, args..., arr[0]);
}
};
template<class InstType, typename ArrType, std::size_t N, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, N, true, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
return h_instantiate_by_c_array<InstType, ArrType, N - 1, false, ArrType, Ps...>::run(arr + 1, arr[0], args...);
}
};
template<class InstType, typename ArrType, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, 0, false, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
(void)arr;
return InstType(args...);
}
};
template<class InstType, typename ArrType, typename... Ps>
struct h_instantiate_by_c_array<InstType, ArrType, 0, true, Ps...>
{
static InstType run(ArrType* arr, Ps... args)
{
(void)arr;
return InstType(args...);
}
};
template<class InstType, typename ArrType, std::size_t N, bool Reverse = false>
InstType instantiate_by_c_array(ArrType* arr)
{
return h_instantiate_by_c_array<InstType, ArrType, N, Reverse>::run(arr);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11META_H
/*
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
*/

View File

@ -0,0 +1,104 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11WORKAROUNDS_H
#define EIGEN_CXX11WORKAROUNDS_H
/* COMPATIBILITY CHECKS
* (so users of compilers that are too old get some realistic error messages)
*/
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER < 1310)
#error Intel Compiler only supports required C++ features since version 13.1.
// note that most stuff in principle works with 13.0 but when combining
// some features, at some point 13.0 will just fail with an internal assertion
#elif defined(__clang__) && (__clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 1))
// note that it _should_ work with 3.1 but it was only tested with 3.2
#error Clang C++ Compiler (clang++) only supports required C++ features since version 3.1.
#elif defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (__GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 6))
// G++ < 4.6 by default will continue processing the source files - even if we use #error to make
// it error out. For this reason, we use the pragma to make sure G++ aborts at the first error
// it sees. Unfortunately, that is still not our #error directive, but at least the output is
// short enough the user has a chance to see that the compiler version is not sufficient for
// the funky template mojo we use.
#pragma GCC diagnostic error "-Wfatal-errors"
#error GNU C++ Compiler (g++) only supports required C++ features since version 4.6.
#endif
/* Check that the compiler at least claims to support C++11. It might not be sufficient
* because the compiler may not implement it correctly, but at least we'll know.
*/
#if __cplusplus <= 199711L
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma GCC diagnostic error "-Wfatal-errors"
#endif
#error This library needs at least a C++11 compliant compiler. If you use g++/clang, please enable the -std=c++11 compiler flag. (-std=c++0x on older versions.)
#endif
namespace Eigen {
namespace internal {
/* std::get is only constexpr in C++14, not yet in C++11
* - libstdc++ from version 4.7 onwards has it nevertheless,
* so use that
* - libstdc++ older versions: use _M_instance directly
* - libc++ all versions so far: use __elems_ directly
* - all other libs: use std::get to be portable, but
* this may not be constexpr
*/
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20120322
#define STD_GET_ARR_HACK a._M_instance[I]
#elif defined(_LIBCPP_VERSION)
#define STD_GET_ARR_HACK a.__elems_[I]
#else
#define STD_GET_ARR_HACK std::template get<I, T, N>(a)
#endif
template<std::size_t I, class T, std::size_t N> constexpr inline T& std_array_get(std::array<T,N>& a) { return (T&) STD_GET_ARR_HACK; }
template<std::size_t I, class T, std::size_t N> constexpr inline T&& std_array_get(std::array<T,N>&& a) { return (T&&) STD_GET_ARR_HACK; }
template<std::size_t I, class T, std::size_t N> constexpr inline T const& std_array_get(std::array<T,N> const& a) { return (T const&) STD_GET_ARR_HACK; }
#undef STD_GET_ARR_HACK
/* Suppose you have a template of the form
* template<typename T> struct X;
* And you want to specialize it in such a way:
* template<typename S1, typename... SN> struct X<Foo<S1, SN...>> { ::: };
* template<> struct X<Foo<>> { ::: };
* This will work in Intel's compiler 13.0, but only to some extent in g++ 4.6, since
* g++ can only match templates called with parameter packs if the number of template
* arguments is not a fixed size (so inside the first specialization, referencing
* X<Foo<Sn...>> will fail in g++). On the other hand, g++ will accept the following:
* template<typename S...> struct X<Foo<S...>> { ::: }:
* as an additional (!) specialization, which will then only match the empty case.
* But Intel's compiler 13.0 won't accept that, it will only accept the empty syntax,
* so we have to create a workaround for this.
*/
#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n) mt... n
#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n) , EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n)
#define EIGEN_TPL_PP_SPEC_HACK_USE(n) n...
#define EIGEN_TPL_PP_SPEC_HACK_USEC(n) , n...
#else
#define EIGEN_TPL_PP_SPEC_HACK_DEF(mt, n)
#define EIGEN_TPL_PP_SPEC_HACK_DEFC(mt, n)
#define EIGEN_TPL_PP_SPEC_HACK_USE(n)
#define EIGEN_TPL_PP_SPEC_HACK_USEC(n)
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CXX11WORKAROUNDS_H
/*
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
*/

View File

@ -92,3 +92,11 @@ ei_add_test(gmres)
ei_add_test(minres)
ei_add_test(levenberg_marquardt)
ei_add_test(bdcsvd)
option(EIGEN_TEST_CXX11 "Enable testing of C++11 features (e.g. Tensor module)." OFF)
if(EIGEN_TEST_CXX11)
# FIXME: add C++11 compiler switch in some portable way
# (MSVC doesn't need any for example, so this will
# clash there)
ei_add_test(cxx11_meta "-std=c++0x")
endif()

View File

@ -0,0 +1,343 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Core>
using Eigen::internal::is_same;
using Eigen::internal::type_list;
using Eigen::internal::numeric_list;
using Eigen::internal::gen_numeric_list;
using Eigen::internal::gen_numeric_list_reversed;
using Eigen::internal::gen_numeric_list_swapped_pair;
using Eigen::internal::gen_numeric_list_repeated;
using Eigen::internal::concat;
using Eigen::internal::mconcat;
using Eigen::internal::take;
using Eigen::internal::skip;
using Eigen::internal::slice;
using Eigen::internal::get;
using Eigen::internal::id_numeric;
using Eigen::internal::id_type;
using Eigen::internal::is_same_gf;
using Eigen::internal::apply_op_from_left;
using Eigen::internal::apply_op_from_right;
using Eigen::internal::contained_in_list;
using Eigen::internal::contained_in_list_gf;
using Eigen::internal::arg_prod;
using Eigen::internal::arg_sum;
using Eigen::internal::sum_op;
using Eigen::internal::product_op;
using Eigen::internal::array_reverse;
using Eigen::internal::array_sum;
using Eigen::internal::array_prod;
using Eigen::internal::array_reduce;
using Eigen::internal::array_zip;
using Eigen::internal::array_zip_and_reduce;
using Eigen::internal::array_apply;
using Eigen::internal::array_apply_and_reduce;
using Eigen::internal::repeat;
using Eigen::internal::instantiate_by_c_array;
struct dummy_a {};
struct dummy_b {};
struct dummy_c {};
struct dummy_d {};
struct dummy_e {};
// dummy operation for testing apply
template<typename A, typename B> struct dummy_op;
template<> struct dummy_op<dummy_a, dummy_b> { typedef dummy_c type; };
template<> struct dummy_op<dummy_b, dummy_a> { typedef dummy_d type; };
template<> struct dummy_op<dummy_b, dummy_c> { typedef dummy_a type; };
template<> struct dummy_op<dummy_c, dummy_b> { typedef dummy_d type; };
template<> struct dummy_op<dummy_c, dummy_a> { typedef dummy_b type; };
template<> struct dummy_op<dummy_a, dummy_c> { typedef dummy_d type; };
template<> struct dummy_op<dummy_a, dummy_a> { typedef dummy_e type; };
template<> struct dummy_op<dummy_b, dummy_b> { typedef dummy_e type; };
template<> struct dummy_op<dummy_c, dummy_c> { typedef dummy_e type; };
template<typename A, typename B> struct dummy_test { constexpr static bool value = false; constexpr static int global_flags = 0; };
template<> struct dummy_test<dummy_a, dummy_a> { constexpr static bool value = true; constexpr static int global_flags = 1; };
template<> struct dummy_test<dummy_b, dummy_b> { constexpr static bool value = true; constexpr static int global_flags = 2; };
template<> struct dummy_test<dummy_c, dummy_c> { constexpr static bool value = true; constexpr static int global_flags = 4; };
struct times2_op { template<typename A> static A run(A v) { return v * 2; } };
struct dummy_inst
{
int c;
dummy_inst() : c(0) {}
explicit dummy_inst(int) : c(1) {}
dummy_inst(int, int) : c(2) {}
dummy_inst(int, int, int) : c(3) {}
dummy_inst(int, int, int, int) : c(4) {}
dummy_inst(int, int, int, int, int) : c(5) {}
};
static void test_gen_numeric_list()
{
VERIFY((is_same<typename gen_numeric_list<int, 0>::type, numeric_list<int>>::value));
VERIFY((is_same<typename gen_numeric_list<int, 1>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename gen_numeric_list<int, 2>::type, numeric_list<int, 0, 1>>::value));
VERIFY((is_same<typename gen_numeric_list<int, 5>::type, numeric_list<int, 0, 1, 2, 3, 4>>::value));
VERIFY((is_same<typename gen_numeric_list<int, 10>::type, numeric_list<int, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>::value));
VERIFY((is_same<typename gen_numeric_list_reversed<int, 0>::type, numeric_list<int>>::value));
VERIFY((is_same<typename gen_numeric_list_reversed<int, 1>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_reversed<int, 2>::type, numeric_list<int, 1, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_reversed<int, 5>::type, numeric_list<int, 4, 3, 2, 1, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_reversed<int, 10>::type, numeric_list<int, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_swapped_pair<int, 0, 2, 3>::type, numeric_list<int>>::value));
VERIFY((is_same<typename gen_numeric_list_swapped_pair<int, 1, 2, 3>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_swapped_pair<int, 2, 2, 3>::type, numeric_list<int, 0, 1>>::value));
VERIFY((is_same<typename gen_numeric_list_swapped_pair<int, 5, 2, 3>::type, numeric_list<int, 0, 1, 3, 2, 4>>::value));
VERIFY((is_same<typename gen_numeric_list_swapped_pair<int, 10, 2, 3>::type, numeric_list<int, 0, 1, 3, 2, 4, 5, 6, 7, 8, 9>>::value));
VERIFY((is_same<typename gen_numeric_list_repeated<int, 0, 0>::type, numeric_list<int>>::value));
VERIFY((is_same<typename gen_numeric_list_repeated<int, 1, 0>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_repeated<int, 2, 0>::type, numeric_list<int, 0, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_repeated<int, 5, 0>::type, numeric_list<int, 0, 0, 0, 0, 0>>::value));
VERIFY((is_same<typename gen_numeric_list_repeated<int, 10, 0>::type, numeric_list<int, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>>::value));
}
static void test_concat()
{
VERIFY((is_same<typename concat<type_list<dummy_a, dummy_a>, type_list<>>::type, type_list<dummy_a, dummy_a>>::value));
VERIFY((is_same<typename concat<type_list<>, type_list<dummy_a, dummy_a>>::type, type_list<dummy_a, dummy_a>>::value));
VERIFY((is_same<typename concat<type_list<dummy_a, dummy_a>, type_list<dummy_a, dummy_a>>::type, type_list<dummy_a, dummy_a, dummy_a, dummy_a>>::value));
VERIFY((is_same<typename concat<type_list<dummy_a, dummy_a>, type_list<dummy_b, dummy_c>>::type, type_list<dummy_a, dummy_a, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename concat<type_list<dummy_a>, type_list<dummy_b, dummy_c>>::type, type_list<dummy_a, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename concat<numeric_list<int, 0, 0>, numeric_list<int>>::type, numeric_list<int, 0, 0>>::value));
VERIFY((is_same<typename concat<numeric_list<int>, numeric_list<int, 0, 0>>::type, numeric_list<int, 0, 0>>::value));
VERIFY((is_same<typename concat<numeric_list<int, 0, 0>, numeric_list<int, 0, 0>>::type, numeric_list<int, 0, 0, 0, 0>>::value));
VERIFY((is_same<typename concat<numeric_list<int, 0, 0>, numeric_list<int, 1, 2>>::type, numeric_list<int, 0, 0, 1, 2>>::value));
VERIFY((is_same<typename concat<numeric_list<int, 0>, numeric_list<int, 1, 2>>::type, numeric_list<int, 0, 1, 2>>::value));
VERIFY((is_same<typename mconcat<type_list<dummy_a>>::type, type_list<dummy_a>>::value));
VERIFY((is_same<typename mconcat<type_list<dummy_a>, type_list<dummy_b>>::type, type_list<dummy_a, dummy_b>>::value));
VERIFY((is_same<typename mconcat<type_list<dummy_a>, type_list<dummy_b>, type_list<dummy_c>>::type, type_list<dummy_a, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename mconcat<type_list<dummy_a>, type_list<dummy_b, dummy_c>>::type, type_list<dummy_a, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename mconcat<type_list<dummy_a, dummy_b>, type_list<dummy_c>>::type, type_list<dummy_a, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename mconcat<numeric_list<int, 0>>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename mconcat<numeric_list<int, 0>, numeric_list<int, 1>>::type, numeric_list<int, 0, 1>>::value));
VERIFY((is_same<typename mconcat<numeric_list<int, 0>, numeric_list<int, 1>, numeric_list<int, 2>>::type, numeric_list<int, 0, 1, 2>>::value));
VERIFY((is_same<typename mconcat<numeric_list<int, 0>, numeric_list<int, 1, 2>>::type, numeric_list<int, 0, 1, 2>>::value));
VERIFY((is_same<typename mconcat<numeric_list<int, 0, 1>, numeric_list<int, 2>>::type, numeric_list<int, 0, 1, 2>>::value));
}
static void test_slice()
{
typedef type_list<dummy_a, dummy_a, dummy_b, dummy_b, dummy_c, dummy_c> tl;
typedef numeric_list<int, 0, 1, 2, 3, 4, 5> il;
VERIFY((is_same<typename take<0, tl>::type, type_list<>>::value));
VERIFY((is_same<typename take<1, tl>::type, type_list<dummy_a>>::value));
VERIFY((is_same<typename take<2, tl>::type, type_list<dummy_a, dummy_a>>::value));
VERIFY((is_same<typename take<3, tl>::type, type_list<dummy_a, dummy_a, dummy_b>>::value));
VERIFY((is_same<typename take<4, tl>::type, type_list<dummy_a, dummy_a, dummy_b, dummy_b>>::value));
VERIFY((is_same<typename take<5, tl>::type, type_list<dummy_a, dummy_a, dummy_b, dummy_b, dummy_c>>::value));
VERIFY((is_same<typename take<6, tl>::type, type_list<dummy_a, dummy_a, dummy_b, dummy_b, dummy_c, dummy_c>>::value));
VERIFY((is_same<typename take<0, il>::type, numeric_list<int>>::value));
VERIFY((is_same<typename take<1, il>::type, numeric_list<int, 0>>::value));
VERIFY((is_same<typename take<2, il>::type, numeric_list<int, 0, 1>>::value));
VERIFY((is_same<typename take<3, il>::type, numeric_list<int, 0, 1, 2>>::value));
VERIFY((is_same<typename take<4, il>::type, numeric_list<int, 0, 1, 2, 3>>::value));
VERIFY((is_same<typename take<5, il>::type, numeric_list<int, 0, 1, 2, 3, 4>>::value));
VERIFY((is_same<typename take<6, il>::type, numeric_list<int, 0, 1, 2, 3, 4, 5>>::value));
VERIFY((is_same<typename skip<0, tl>::type, type_list<dummy_a, dummy_a, dummy_b, dummy_b, dummy_c, dummy_c>>::value));
VERIFY((is_same<typename skip<1, tl>::type, type_list<dummy_a, dummy_b, dummy_b, dummy_c, dummy_c>>::value));
VERIFY((is_same<typename skip<2, tl>::type, type_list<dummy_b, dummy_b, dummy_c, dummy_c>>::value));
VERIFY((is_same<typename skip<3, tl>::type, type_list<dummy_b, dummy_c, dummy_c>>::value));
VERIFY((is_same<typename skip<4, tl>::type, type_list<dummy_c, dummy_c>>::value));
VERIFY((is_same<typename skip<5, tl>::type, type_list<dummy_c>>::value));
VERIFY((is_same<typename skip<6, tl>::type, type_list<>>::value));
VERIFY((is_same<typename skip<0, il>::type, numeric_list<int, 0, 1, 2, 3, 4, 5>>::value));
VERIFY((is_same<typename skip<1, il>::type, numeric_list<int, 1, 2, 3, 4, 5>>::value));
VERIFY((is_same<typename skip<2, il>::type, numeric_list<int, 2, 3, 4, 5>>::value));
VERIFY((is_same<typename skip<3, il>::type, numeric_list<int, 3, 4, 5>>::value));
VERIFY((is_same<typename skip<4, il>::type, numeric_list<int, 4, 5>>::value));
VERIFY((is_same<typename skip<5, il>::type, numeric_list<int, 5>>::value));
VERIFY((is_same<typename skip<6, il>::type, numeric_list<int>>::value));
VERIFY((is_same<typename slice<0, 3, tl>::type, typename take<3, tl>::type>::value));
VERIFY((is_same<typename slice<0, 3, il>::type, typename take<3, il>::type>::value));
VERIFY((is_same<typename slice<1, 3, tl>::type, type_list<dummy_a, dummy_b, dummy_b>>::value));
VERIFY((is_same<typename slice<1, 3, il>::type, numeric_list<int, 1, 2, 3>>::value));
}
static void test_get()
{
typedef type_list<dummy_a, dummy_a, dummy_b, dummy_b, dummy_c, dummy_c> tl;
typedef numeric_list<int, 4, 8, 15, 16, 23, 42> il;
VERIFY((is_same<typename get<0, tl>::type, dummy_a>::value));
VERIFY((is_same<typename get<1, tl>::type, dummy_a>::value));
VERIFY((is_same<typename get<2, tl>::type, dummy_b>::value));
VERIFY((is_same<typename get<3, tl>::type, dummy_b>::value));
VERIFY((is_same<typename get<4, tl>::type, dummy_c>::value));
VERIFY((is_same<typename get<5, tl>::type, dummy_c>::value));
VERIFY_IS_EQUAL(((int)get<0, il>::value), 4);
VERIFY_IS_EQUAL(((int)get<1, il>::value), 8);
VERIFY_IS_EQUAL(((int)get<2, il>::value), 15);
VERIFY_IS_EQUAL(((int)get<3, il>::value), 16);
VERIFY_IS_EQUAL(((int)get<4, il>::value), 23);
VERIFY_IS_EQUAL(((int)get<5, il>::value), 42);
}
static void test_id_helper(dummy_a a, dummy_a b, dummy_a c)
{
(void)a;
(void)b;
(void)c;
}
template<int... ii>
static void test_id_numeric()
{
test_id_helper(typename id_numeric<int, ii, dummy_a>::type()...);
}
template<typename... tt>
static void test_id_type()
{
test_id_helper(typename id_type<tt, dummy_a>::type()...);
}
static void test_id()
{
// don't call VERIFY here, just assume it works if it compiles
// (otherwise it will complain that it can't find the function)
test_id_numeric<1, 4, 6>();
test_id_type<dummy_a, dummy_b, dummy_c>();
}
static void test_is_same_gf()
{
VERIFY((!is_same_gf<dummy_a, dummy_b>::value));
VERIFY((!!is_same_gf<dummy_a, dummy_a>::value));
VERIFY_IS_EQUAL((!!is_same_gf<dummy_a, dummy_b>::global_flags), 0);
VERIFY_IS_EQUAL((!!is_same_gf<dummy_a, dummy_a>::global_flags), 0);
}
static void test_apply_op()
{
typedef type_list<dummy_a, dummy_b, dummy_c> tl;
VERIFY((!!is_same<typename apply_op_from_left<dummy_op, dummy_a, tl>::type, type_list<dummy_e, dummy_c, dummy_d>>::value));
VERIFY((!!is_same<typename apply_op_from_right<dummy_op, dummy_a, tl>::type, type_list<dummy_e, dummy_d, dummy_b>>::value));
}
static void test_contained_in_list()
{
typedef type_list<dummy_a, dummy_b, dummy_c> tl;
VERIFY((!!contained_in_list<is_same, dummy_a, tl>::value));
VERIFY((!!contained_in_list<is_same, dummy_b, tl>::value));
VERIFY((!!contained_in_list<is_same, dummy_c, tl>::value));
VERIFY((!contained_in_list<is_same, dummy_d, tl>::value));
VERIFY((!contained_in_list<is_same, dummy_e, tl>::value));
VERIFY((!!contained_in_list_gf<dummy_test, dummy_a, tl>::value));
VERIFY((!!contained_in_list_gf<dummy_test, dummy_b, tl>::value));
VERIFY((!!contained_in_list_gf<dummy_test, dummy_c, tl>::value));
VERIFY((!contained_in_list_gf<dummy_test, dummy_d, tl>::value));
VERIFY((!contained_in_list_gf<dummy_test, dummy_e, tl>::value));
VERIFY_IS_EQUAL(((int)contained_in_list_gf<dummy_test, dummy_a, tl>::global_flags), 1);
VERIFY_IS_EQUAL(((int)contained_in_list_gf<dummy_test, dummy_b, tl>::global_flags), 2);
VERIFY_IS_EQUAL(((int)contained_in_list_gf<dummy_test, dummy_c, tl>::global_flags), 4);
VERIFY_IS_EQUAL(((int)contained_in_list_gf<dummy_test, dummy_d, tl>::global_flags), 0);
VERIFY_IS_EQUAL(((int)contained_in_list_gf<dummy_test, dummy_e, tl>::global_flags), 0);
}
static void test_arg_reductions()
{
VERIFY_IS_EQUAL(arg_sum(1,2,3,4), 10);
VERIFY_IS_EQUAL(arg_prod(1,2,3,4), 24);
VERIFY_IS_APPROX(arg_sum(0.5, 2, 5), 7.5);
VERIFY_IS_APPROX(arg_prod(0.5, 2, 5), 5.0);
}
static void test_array_reverse_and_reduce()
{
std::array<int, 6> a{{4, 8, 15, 16, 23, 42}};
std::array<int, 6> b{{42, 23, 16, 15, 8, 4}};
// there is no operator<< for std::array, so VERIFY_IS_EQUAL will
// not compile
VERIFY((array_reverse(a) == b));
VERIFY((array_reverse(b) == a));
VERIFY_IS_EQUAL((array_sum(a)), 108);
VERIFY_IS_EQUAL((array_sum(b)), 108);
VERIFY_IS_EQUAL((array_prod(a)), 7418880);
VERIFY_IS_EQUAL((array_prod(b)), 7418880);
}
static void test_array_zip_and_apply()
{
std::array<int, 6> a{{4, 8, 15, 16, 23, 42}};
std::array<int, 6> b{{0, 1, 2, 3, 4, 5}};
std::array<int, 6> c{{4, 9, 17, 19, 27, 47}};
std::array<int, 6> d{{0, 8, 30, 48, 92, 210}};
std::array<int, 6> e{{0, 2, 4, 6, 8, 10}};
VERIFY((array_zip<sum_op>(a, b) == c));
VERIFY((array_zip<product_op>(a, b) == d));
VERIFY((array_apply<times2_op>(b) == e));
VERIFY_IS_EQUAL((array_apply_and_reduce<sum_op, times2_op>(a)), 216);
VERIFY_IS_EQUAL((array_apply_and_reduce<sum_op, times2_op>(b)), 30);
VERIFY_IS_EQUAL((array_zip_and_reduce<product_op, sum_op>(a, b)), 14755932);
VERIFY_IS_EQUAL((array_zip_and_reduce<sum_op, product_op>(a, b)), 388);
}
static void test_array_misc()
{
std::array<int, 3> a3{{1, 1, 1}};
std::array<int, 6> a6{{2, 2, 2, 2, 2, 2}};
VERIFY((repeat<3, int>(1) == a3));
VERIFY((repeat<6, int>(2) == a6));
int data[5] = { 0, 1, 2, 3, 4 };
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 0>(data).c), 0);
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 1>(data).c), 1);
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 2>(data).c), 2);
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 3>(data).c), 3);
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 4>(data).c), 4);
VERIFY_IS_EQUAL((instantiate_by_c_array<dummy_inst, int, 5>(data).c), 5);
}
void test_cxx11_meta()
{
CALL_SUBTEST(test_gen_numeric_list());
CALL_SUBTEST(test_concat());
CALL_SUBTEST(test_slice());
CALL_SUBTEST(test_get());
CALL_SUBTEST(test_id());
CALL_SUBTEST(test_is_same_gf());
CALL_SUBTEST(test_apply_op());
CALL_SUBTEST(test_contained_in_list());
CALL_SUBTEST(test_arg_reductions());
CALL_SUBTEST(test_array_reverse_and_reduce());
CALL_SUBTEST(test_array_zip_and_apply());
CALL_SUBTEST(test_array_misc());
}
/*
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
*/