merge with complex branch

This commit is contained in:
Gael Guennebaud 2010-07-22 16:57:14 +02:00
commit 5d98fa235d
7 changed files with 174 additions and 13 deletions

View File

@ -6,26 +6,133 @@ namespace Eigen {
\li \b Previous: \ref TutorialBlockOperations
\li \b Next: \ref TutorialLinearAlgebra
\section TutorialMatrixArithmCommaInitializer Comma initializer
This page discusses several advanced methods for initializing matrices. It gives more details on the
comma-initializer, which was introduced before. It also explains how to get special matrices such as the
identity matrix and the zero matrix.
Eigen offers a comma initializer syntax which allows to set all the coefficients
of any dense objects (matrix, vector, array, block, etc.) to specific values:
\include Tutorial_commainit_01.cpp
\b Table \b of \b contents
- \ref TutorialAdvancedInitializationCommaInitializer
- \ref TutorialAdvancedInitializationSpecialMatrices
- \ref TutorialAdvancedInitializationTemporaryObjects
\section TutorialAdvancedInitializationCommaInitializer The comma initializer
Eigen offers a comma initializer syntax which allows the user to easily set all the coefficients of a matrix,
vector or array. Simply list the coefficients, starting at the top-left corner and moving from left to right
and from the top to the bottom. The size of the object needs to be specified beforehand. If you list too few
or too many coefficients, Eigen will complain.
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_commainit_01.cpp
</td>
<td>
Output: \verbinclude Tutorial_commainit_01.out
</td></tr></table>
Moreover, the elements of the initialization list may themselves be Eigen expressions:
\include Tutorial_commainit_02.cpp
Output: \verbinclude Tutorial_commainit_02.out
The comma initializer can also be used to fill block expressions such as <tt>m.row(i)</tt>. Here is a more
complicated way to get the same result as above:
<span class="note">\b Side \b note: here \link CommaInitializer::finished() .finished() \endlink
is used to get the actual matrix object once the comma initialization
of our temporary submatrix is done. Note that despite the apparent complexity of such an expression,
Eigen's comma initializer usually compiles to very optimized code without any overhead.</span>
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_commainit_01b.cpp
</td>
<td>
Output: \verbinclude Tutorial_commainit_01b.out
</td></tr></table>
Moreover, the elements of the initialization list may themselves be matrices. Thus, we can use them to
initialize matrices with a block structure.
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_AdvancedInitialization_Block.cpp
</td>
<td>
Output: \verbinclude Tutorial_AdvancedInitialization_Block.out
</td></tr></table>
TODO mention using the comma initializer to fill a block xpr like m.row(i) << 1,2,3;
\section TutorialAdvancedInitializationSpecialMatrices Special matrices and arrays
The Matrix and Array classes have static methods like \link DenseBase::Zero() Zero()\endlink, which can be
used to initialize all coefficients to zero. There are three variants. The first variant takes no arguments
and can only be used for fixed-size objects. If you want to initialize a dynamic-size object to zero, you need
to specify the size. Thus, the second variant requires one argument and can be used for one-dimensional
dynamic-size objects, while the third variant requires two arguments and can be used for two-dimensional
objects. All three variants are illustrated in the following example:
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_AdvancedInitialization_Zero.cpp
</td>
<td>
Output: \verbinclude Tutorial_AdvancedInitialization_Zero.out
</td></tr></table>
Similarly, the static method \link DenseBase::Constant() Constant\endlink(value) sets all coefficients to \c
value. If the size of the object needs to be specified, the additional arguments go before the \c value
argument, as in <tt>MatrixXd::Constant(rows, cols, value)</tt>. The method \link DenseBase::Random() Random()
\endlink fills the matrix or array with random coefficients. The identity matrix can be obtained by calling
\link MatrixBase::Identity() Identity()\endlink; this method is only available for Matrix, not for Array,
because "identity matrix" is a linear algebra concept. The method
\link DenseBase::LinSpaced LinSpaced\endlink(low, high, size) is only available for vectors and
one-dimensional arrays; it yields a vector of the specified size whose coefficients are equally spaced between
\c low and \c high. The method \c LinSpaced() is illustrated in the following example, which prints a table
with angles in degrees, the corresponding angle in radians, and their sine and cosine.
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_AdvancedInitialization_LinSpaced.cpp
</td>
<td>
Output: \verbinclude Tutorial_AdvancedInitialization_LinSpaced.out
</td></tr></table>
This example shows that objects like the ones returned by LinSpaced() can be assigned to variables (and
expressions). Eigen defines utility functions like \link DenseBase::setZero() setZero()\endlink,
\link MatrixBase::setIdentity() \endlink and \link DenseBase:setLinSpaced() \endlink to do this
conveniently. The following example contrasts three ways to construct the matrix
\f$ J = \bigl[ \begin{smallmatrix} O & I \\ I & O \end{smallmatrix} \bigr] \f$: using static methods and
assignment, using static methods and the comma-initializer, or using the setXxx() methods.
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_AdvancedInitialization_ThreeWays.cpp
</td>
<td>
Output: \verbinclude Tutorial_AdvancedInitialization_ThreeWays.out
</td></tr></table>
A summary of all pre-defined matrix, vector and array objects can be found in the \ref QuickRefPage.
\section TutorialAdvancedInitializationTemporaryObjects Temporary matrices and arrays
As shown above, static methods as Zero() and Constant() can be used to initialize to variables at the time of
declaration or at the right-hand side of an assignment operator. You can think of these methods as returning a
matrix or array (in fact, they return a so-called \ref TopicEigenExpressionTemplates "expression object" which
evaluates to a matrix when needed). This matrix can also be used as a temporary object. The second example in
the \ref GettingStarted guide, which we reproduced here, already illustrates this.
<table class="tutorial_code"><tr><td>
Example: \include QuickStart_example2_dynamic.cpp
</td>
<td>
Output: \verbinclude QuickStart_example2_dynamic.out
</td></tr></table>
The expression <tt>m + MatrixXf::Constant(3,3,1.2)</tt> constructs the 3-by-3 matrix with all its coefficients
equal to 1.2 and adds it to \c m ; in other words, it adds 1.2 to all the coefficients of \c m . The
comma-initializer can also be used to construct temporary objects. The following example constructs a random
matrix of size 2-by-3, and then multiplies this matrix on the left with
\f$ \bigl[ \begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \bigr] \f$.
<table class="tutorial_code"><tr><td>
Example: \include Tutorial_AdvancedInitialization_CommaTemporary.cpp
</td>
<td>
Output: \verbinclude Tutorial_AdvancedInitialization_CommaTemporary.out
</td></tr></table>
The \link CommaInitializer::finished() finished() \endlink method is necessary here to get the actual matrix
object once the comma initialization of our temporary submatrix is done.
TODO add more sections about Identity(), Zero(), Constant(), Random(), LinSpaced().
\li \b Next: \ref TutorialLinearAlgebra

View File

@ -0,0 +1,5 @@
MatrixXf matA(2, 2);
matA << 1, 2, 3, 4;
MatrixXf matB(4, 4);
matB << matA, matA/10, matA/10, matA;
std::cout << matB << std::endl;

View File

@ -0,0 +1,4 @@
MatrixXf mat = MatrixXf::Random(2, 3);
std::cout << mat << std::endl << std::endl;
mat = (MatrixXf(2,2) << 0, 1, 1, 0).finished() * mat;
std::cout << mat << std::endl;

View File

@ -0,0 +1,7 @@
ArrayXXf table(10, 4);
table.col(0) = ArrayXf::LinSpaced(10, 0, 90);
table.col(1) = M_PI / 180 * table.col(0);
table.col(2) = table.col(1).sin();
table.col(3) = table.col(1).cos();
std::cout << " Degrees Radians Sine Cosine\n";
std::cout << table << std::endl;

View File

@ -0,0 +1,20 @@
const int size = 6;
MatrixXd mat1(size, size);
mat1.topLeftCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
mat1.topRightCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
mat1.bottomLeftCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
mat1.bottomRightCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
std::cout << mat1 << std::endl << std::endl;
MatrixXd mat2(size, size);
mat2.topLeftCorner(size/2, size/2).setZero();
mat2.topRightCorner(size/2, size/2).setIdentity();
mat2.bottomLeftCorner(size/2, size/2).setIdentity();
mat2.bottomRightCorner(size/2, size/2).setZero();
std::cout << mat2 << std::endl << std::endl;
MatrixXd mat3(size, size);
mat3 << MatrixXd::Zero(size/2, size/2), MatrixXd::Identity(size/2, size/2),
MatrixXd::Identity(size/2, size/2), MatrixXd::Zero(size/2, size/2);
std::cout << mat3 << std::endl;

View File

@ -0,0 +1,13 @@
std::cout << "A fixed-size array:\n";
Array33f a1 = Array33f::Zero();
std::cout << a1 << "\n\n";
std::cout << "A one-dimensional dynamic-size array:\n";
ArrayXf a2 = ArrayXf::Zero(3);
std::cout << a2 << "\n\n";
std::cout << "A two-dimensional dynamic-size array:\n";
ArrayXXf a3 = ArrayXXf::Zero(3, 4);
std::cout << a3 << "\n";

View File

@ -0,0 +1,5 @@
Matrix3f m;
m.row(0) << 1, 2, 3;
m.block(1,0,2,2) << 4, 5, 7, 8;
m.col(2).tail(2) << 6, 9;
std::cout << m;