* kill the retval typedefs, instead introduce ei_xxx_retval which does the job automatically in 99% cases and can be specialized

* add real/imag/abs2 global functions for Array
* document ei_global_math_functions_filtering_base
* improve unit tests
This commit is contained in:
Benoit Jacob 2010-04-28 22:42:34 -04:00
parent e277586958
commit 5d63d2cc4b
3 changed files with 209 additions and 76 deletions

View File

@ -34,11 +34,16 @@
}
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::FUNCTOR<typename Derived::Scalar>, Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::FUNCTOR<typename Derived::Scalar>, Derived> retval; \
static inline retval run(const Eigen::ArrayBase<Derived>& x) \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return x.derived(); \
} \
@ -47,6 +52,8 @@
namespace std
{
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(real,ei_scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(imag,ei_scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sin,ei_scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(cos,ei_scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(exp,ei_scalar_exp_op)
@ -57,6 +64,8 @@ namespace std
namespace Eigen
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(ei_real,ei_scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(ei_imag,ei_scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(ei_sin,ei_scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(ei_cos,ei_scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(ei_exp,ei_scalar_exp_op)

View File

@ -25,6 +25,26 @@
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
/** \internal \struct ei_global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
* - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
* ei_global_math_functions_filtering_base<T>::type is a typedef for it.
* - otherwise, ei_global_math_functions_filtering_base<T>::type is a typedef for T.
*
* How it's used:
* To allow to defined the global math functions (like ei_sin...) in certain cases, like the Array expressions.
* When you do ei_sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
* is that it inherits ArrayBase. So we implement a partial specialization of ei_sin_impl for ArrayBase<Derived>.
* So we must make sure to use ei_sin_impl<ArrayBase<Derived> > and not ei_sin_impl<Derived>, otherwise our partial specialization
* won't be used. How does ei_sin know that? That's exactly what ei_global_math_functions_filtering_base tells it.
*
* How it's implemented:
* SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
* the typename dummy by an integer template parameter, it doesn't work anymore!
*/
template<typename T, typename dummy = void>
struct ei_global_math_functions_filtering_base
{
@ -42,7 +62,9 @@ struct ei_global_math_functions_filtering_base
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};
#define EIGEN_MFIMPL(func, scalar) ei_##func##_impl<typename ei_global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_IMPL(func, scalar) ei_##func##_impl<typename ei_global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename ei_##func##_retval<typename ei_global_math_functions_filtering_base<scalar>::type>::type
/****************************************************************************
* Implementation of ei_real *
@ -52,7 +74,6 @@ template<typename Scalar>
struct ei_real_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar& x)
{
return x;
@ -62,7 +83,6 @@ struct ei_real_impl
template<typename RealScalar>
struct ei_real_impl<std::complex<RealScalar> >
{
typedef RealScalar retval;
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::real(x);
@ -70,9 +90,15 @@ struct ei_real_impl<std::complex<RealScalar> >
};
template<typename Scalar>
inline typename ei_real_impl<Scalar>::retval ei_real(const Scalar& x)
struct ei_real_retval
{
return ei_real_impl<Scalar>::run(x);
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) ei_real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
/****************************************************************************
@ -83,7 +109,6 @@ template<typename Scalar>
struct ei_imag_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
@ -93,7 +118,6 @@ struct ei_imag_impl
template<typename RealScalar>
struct ei_imag_impl<std::complex<RealScalar> >
{
typedef RealScalar retval;
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::imag(x);
@ -101,9 +125,15 @@ struct ei_imag_impl<std::complex<RealScalar> >
};
template<typename Scalar>
inline typename ei_imag_impl<Scalar>::retval ei_imag(const Scalar& x)
struct ei_imag_retval
{
return ei_imag_impl<Scalar>::run(x);
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) ei_imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
/****************************************************************************
@ -125,15 +155,21 @@ struct ei_real_ref_impl
};
template<typename Scalar>
inline const typename NumTraits<Scalar>::Real& ei_real_ref(const Scalar& x)
struct ei_real_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline const EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) ei_real_ref(const Scalar& x)
{
return ei_real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline typename NumTraits<Scalar>::Real& ei_real_ref(Scalar& x)
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) ei_real_ref(Scalar& x)
{
return ei_real_ref_impl<Scalar>::run(x);
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
/****************************************************************************
@ -171,15 +207,21 @@ template<typename Scalar>
struct ei_imag_ref_impl : ei_imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
inline const typename NumTraits<Scalar>::Real& ei_imag_ref(const Scalar& x)
struct ei_imag_ref_retval
{
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline const EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) ei_imag_ref(const Scalar& x)
{
return ei_imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline typename NumTraits<Scalar>::Real& ei_imag_ref(Scalar& x)
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) ei_imag_ref(Scalar& x)
{
return ei_imag_ref_impl<Scalar>::run(x);
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
/****************************************************************************
@ -189,7 +231,6 @@ inline typename NumTraits<Scalar>::Real& ei_imag_ref(Scalar& x)
template<typename Scalar>
struct ei_conj_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return x;
@ -199,7 +240,6 @@ struct ei_conj_impl
template<typename RealScalar>
struct ei_conj_impl<std::complex<RealScalar> >
{
typedef std::complex<RealScalar> retval;
static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x)
{
return std::conj(x);
@ -207,9 +247,15 @@ struct ei_conj_impl<std::complex<RealScalar> >
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(conj, Scalar)::retval ei_conj(const Scalar& x)
struct ei_conj_retval
{
return EIGEN_MFIMPL(conj, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) ei_conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
/****************************************************************************
@ -220,7 +266,6 @@ template<typename Scalar>
struct ei_abs_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar& x)
{
return std::abs(x);
@ -228,9 +273,15 @@ struct ei_abs_impl
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(abs, Scalar)::retval ei_abs(const Scalar& x)
struct ei_abs_retval
{
return EIGEN_MFIMPL(abs, Scalar)::run(x);
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) ei_abs(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x);
}
/****************************************************************************
@ -241,7 +292,6 @@ template<typename Scalar>
struct ei_abs2_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar& x)
{
return x*x;
@ -251,7 +301,6 @@ struct ei_abs2_impl
template<typename RealScalar>
struct ei_abs2_impl<std::complex<RealScalar> >
{
typedef RealScalar retval;
static inline RealScalar run(const std::complex<RealScalar>& x)
{
return std::norm(x);
@ -259,32 +308,53 @@ struct ei_abs2_impl<std::complex<RealScalar> >
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(abs2, Scalar)::retval ei_abs2(const Scalar& x)
struct ei_abs2_retval
{
return EIGEN_MFIMPL(abs2, Scalar)::run(x);
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) ei_abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
/****************************************************************************
* Implementation of ei_norm1 *
****************************************************************************/
template<typename Scalar>
struct ei_norm1_impl
template<typename Scalar, bool IsComplex>
struct ei_norm1_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar& x)
{
return NumTraits<Scalar>::IsComplex
? ei_abs(ei_real(x)) + ei_abs(ei_imag(x))
: ei_abs(x);
return ei_abs(ei_real(x)) + ei_abs(ei_imag(x));
};
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(norm1, Scalar)::retval ei_norm1(const Scalar& x)
struct ei_norm1_default_impl<Scalar, false>
{
return EIGEN_MFIMPL(norm1, Scalar)::run(x);
static inline Scalar run(const Scalar& x)
{
return ei_abs(x);
};
};
template<typename Scalar>
struct ei_norm1_impl : ei_norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
template<typename Scalar>
struct ei_norm1_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) ei_norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
/****************************************************************************
@ -295,7 +365,6 @@ template<typename Scalar>
struct ei_hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef RealScalar retval;
static inline RealScalar run(const Scalar& x, const Scalar& y)
{
RealScalar _x = ei_abs(x);
@ -308,9 +377,15 @@ struct ei_hypot_impl
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(hypot, Scalar)::retval ei_hypot(const Scalar& x, const Scalar& y)
struct ei_hypot_retval
{
return EIGEN_MFIMPL(hypot, Scalar)::run(x);
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) ei_hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
/****************************************************************************
@ -320,15 +395,16 @@ inline typename EIGEN_MFIMPL(hypot, Scalar)::retval ei_hypot(const Scalar& x, co
template<typename OldType, typename NewType>
struct ei_cast_impl
{
typedef NewType retval;
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
}
};
// here, for once, we're plainly returning NewType: we don't want ei_cast to do weird things.
template<typename OldType, typename NewType>
inline typename ei_cast_impl<OldType, NewType>::retval ei_cast(const OldType& x)
inline NewType ei_cast(const OldType& x)
{
return ei_cast_impl<OldType, NewType>::run(x);
}
@ -340,7 +416,6 @@ inline typename ei_cast_impl<OldType, NewType>::retval ei_cast(const OldType& x)
template<typename Scalar, bool IsInteger>
struct ei_sqrt_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return std::sqrt(x);
@ -350,7 +425,6 @@ struct ei_sqrt_default_impl
template<typename Scalar>
struct ei_sqrt_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -362,9 +436,15 @@ template<typename Scalar>
struct ei_sqrt_impl : ei_sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(sqrt, Scalar)::retval ei_sqrt(const Scalar& x)
struct ei_sqrt_retval
{
return EIGEN_MFIMPL(sqrt, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) ei_sqrt(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
}
/****************************************************************************
@ -374,7 +454,6 @@ inline typename EIGEN_MFIMPL(sqrt, Scalar)::retval ei_sqrt(const Scalar& x)
template<typename Scalar, bool IsInteger>
struct ei_exp_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return std::exp(x);
@ -384,7 +463,6 @@ struct ei_exp_default_impl
template<typename Scalar>
struct ei_exp_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -396,9 +474,15 @@ template<typename Scalar>
struct ei_exp_impl : ei_exp_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(exp, Scalar)::retval ei_exp(const Scalar& x)
struct ei_exp_retval
{
return EIGEN_MFIMPL(exp, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(exp, Scalar) ei_exp(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(exp, Scalar)::run(x);
}
/****************************************************************************
@ -408,7 +492,6 @@ inline typename EIGEN_MFIMPL(exp, Scalar)::retval ei_exp(const Scalar& x)
template<typename Scalar, bool IsInteger>
struct ei_cos_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return std::cos(x);
@ -418,7 +501,6 @@ struct ei_cos_default_impl
template<typename Scalar>
struct ei_cos_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -430,9 +512,15 @@ template<typename Scalar>
struct ei_cos_impl : ei_cos_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(cos, Scalar)::retval ei_cos(const Scalar& x)
struct ei_cos_retval
{
return EIGEN_MFIMPL(cos, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(cos, Scalar) ei_cos(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(cos, Scalar)::run(x);
}
/****************************************************************************
@ -442,7 +530,6 @@ inline typename EIGEN_MFIMPL(cos, Scalar)::retval ei_cos(const Scalar& x)
template<typename Scalar, bool IsInteger>
struct ei_sin_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return std::sin(x);
@ -452,7 +539,6 @@ struct ei_sin_default_impl
template<typename Scalar>
struct ei_sin_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -464,9 +550,15 @@ template<typename Scalar>
struct ei_sin_impl : ei_sin_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(sin, Scalar)::retval ei_sin(const Scalar& x)
struct ei_sin_retval
{
return EIGEN_MFIMPL(sin, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(sin, Scalar) ei_sin(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(sin, Scalar)::run(x);
}
/****************************************************************************
@ -476,7 +568,6 @@ inline typename EIGEN_MFIMPL(sin, Scalar)::retval ei_sin(const Scalar& x)
template<typename Scalar, bool IsInteger>
struct ei_log_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x)
{
return std::log(x);
@ -486,7 +577,6 @@ struct ei_log_default_impl
template<typename Scalar>
struct ei_log_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -498,9 +588,15 @@ template<typename Scalar>
struct ei_log_impl : ei_log_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(log, Scalar)::retval ei_log(const Scalar& x)
struct ei_log_retval
{
return EIGEN_MFIMPL(log, Scalar)::run(x);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(log, Scalar) ei_log(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(log, Scalar)::run(x);
}
/****************************************************************************
@ -520,7 +616,6 @@ struct ei_atan2_default_impl
template<typename Scalar>
struct ei_atan2_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar&, const Scalar&)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
@ -532,9 +627,15 @@ template<typename Scalar>
struct ei_atan2_impl : ei_atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(atan2, Scalar)::retval ei_atan2(const Scalar& x, const Scalar& y)
struct ei_atan2_retval
{
return EIGEN_MFIMPL(atan2, Scalar)::run(x, y);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) ei_atan2(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y);
}
/****************************************************************************
@ -554,7 +655,6 @@ struct ei_pow_default_impl
template<typename Scalar>
struct ei_pow_default_impl<Scalar, true>
{
typedef Scalar retval;
static inline Scalar run(Scalar x, Scalar y)
{
int res = 1;
@ -575,9 +675,15 @@ template<typename Scalar>
struct ei_pow_impl : ei_pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
inline typename EIGEN_MFIMPL(pow, Scalar)::retval ei_pow(const Scalar& x, const Scalar& y)
struct ei_pow_retval
{
return EIGEN_MFIMPL(pow, Scalar)::run(x, y);
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) ei_pow(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}
/****************************************************************************
@ -592,13 +698,18 @@ struct ei_random_default_impl {};
template<typename Scalar>
struct ei_random_impl : ei_random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar> inline typename EIGEN_MFIMPL(random, Scalar)::retval ei_random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline typename EIGEN_MFIMPL(random, Scalar)::retval ei_random();
template<typename Scalar>
struct ei_random_retval
{
typedef Scalar type;
};
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) ei_random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) ei_random();
template<typename Scalar>
struct ei_random_default_impl<Scalar, false, false>
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + (y-x) * Scalar(std::rand()) / float(RAND_MAX);
@ -612,7 +723,6 @@ struct ei_random_default_impl<Scalar, false, false>
template<typename Scalar>
struct ei_random_default_impl<Scalar, false, true>
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + Scalar((y-x+1) * (std::rand() / (RAND_MAX + typename NumTraits<Scalar>::NonInteger(1))));
@ -626,7 +736,6 @@ struct ei_random_default_impl<Scalar, false, true>
template<typename Scalar>
struct ei_random_default_impl<Scalar, true, false>
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return Scalar(ei_random(ei_real(x), ei_real(y)),
@ -640,15 +749,15 @@ struct ei_random_default_impl<Scalar, true, false>
};
template<typename Scalar>
inline typename EIGEN_MFIMPL(random, Scalar)::retval ei_random(const Scalar& x, const Scalar& y)
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) ei_random(const Scalar& x, const Scalar& y)
{
return EIGEN_MFIMPL(random, Scalar)::run(x, y);
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}
template<typename Scalar>
inline typename EIGEN_MFIMPL(random, Scalar)::retval ei_random()
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) ei_random()
{
return EIGEN_MFIMPL(random, Scalar)::run();
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
/****************************************************************************

View File

@ -154,6 +154,13 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1)));
VERIFY_IS_APPROX(m1.abs().sqrt(), ei_sqrt(ei_abs(m1)));
VERIFY_IS_APPROX(m1.abs(), ei_sqrt(ei_abs2(m1)));
VERIFY_IS_APPROX(ei_abs2(ei_real(m1)) + ei_abs2(ei_imag(m1)), ei_abs2(m1));
VERIFY_IS_APPROX(ei_abs2(std::real(m1)) + ei_abs2(std::imag(m1)), ei_abs2(m1));
if(!NumTraits<Scalar>::IsComplex)
VERIFY_IS_APPROX(ei_real(m1), m1);
VERIFY_IS_APPROX(m1.abs().log(), std::log(std::abs(m1)));
VERIFY_IS_APPROX(m1.abs().log(), ei_log(ei_abs(m1)));
@ -186,4 +193,12 @@ void test_array()
CALL_SUBTEST_3( array_real(Array44d()) );
CALL_SUBTEST_5( array_real(ArrayXXf(8, 12)) );
}
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<int>::type, int >::ret));
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<float>::type, float >::ret));
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::ret));
typedef CwiseUnaryOp<ei_scalar_sum_op<double>, ArrayXd > Xpr;
VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Xpr>::type,
ArrayBase<Xpr>
>::ret));
}