QR and SVD decomposition interface unification.

Added default ctor and public compute method as
well as safe-guards against uninitialized usage.
Added unit tests for the safe-guards.
This commit is contained in:
Hauke Heibel 2009-05-22 14:27:58 +02:00
parent c7baddb132
commit 5c5789cf0f
4 changed files with 114 additions and 12 deletions

View File

@ -49,11 +49,20 @@ template<typename MatrixType> class QR
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via QR::compute(const MatrixType&).
*/
QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
QR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(matrix.cols())
m_hCoeffs(matrix.cols()),
m_isInitialized(false)
{
_compute(matrix);
compute(matrix);
}
/** \deprecated use isInjective()
@ -62,7 +71,11 @@ template<typename MatrixType> class QR
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
EIGEN_DEPRECATED bool isFullRank() const { return rank() == m_qr.cols(); }
EIGEN_DEPRECATED bool isFullRank() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.cols();
}
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
@ -78,6 +91,7 @@ template<typename MatrixType> class QR
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return m_qr.cols() - rank();
}
@ -89,6 +103,7 @@ template<typename MatrixType> class QR
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.cols();
}
@ -100,6 +115,7 @@ template<typename MatrixType> class QR
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.rows();
}
@ -110,6 +126,7 @@ template<typename MatrixType> class QR
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
return isInjective() && isSurjective();
}
@ -117,6 +134,7 @@ template<typename MatrixType> class QR
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
{
ei_assert(m_isInitialized && "QR is not initialized.");
int cols = m_qr.cols();
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
}
@ -149,21 +167,21 @@ template<typename MatrixType> class QR
MatrixType matrixQ(void) const;
private:
void _compute(const MatrixType& matrix);
void compute(const MatrixType& matrix);
protected:
MatrixType m_qr;
VectorType m_hCoeffs;
mutable int m_rank;
mutable bool m_rankIsUptodate;
bool m_isInitialized;
};
/** \returns the rank of the matrix of which *this is the QR decomposition. */
template<typename MatrixType>
int QR<MatrixType>::rank() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
if (!m_rankIsUptodate)
{
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
@ -179,10 +197,12 @@ int QR<MatrixType>::rank() const
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
void QR<MatrixType>::_compute(const MatrixType& matrix)
{
void QR<MatrixType>::compute(const MatrixType& matrix)
{
m_rankIsUptodate = false;
m_qr = matrix;
m_hCoeffs.resize(matrix.cols());
int rows = matrix.rows();
int cols = matrix.cols();
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
@ -237,6 +257,7 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
m_hCoeffs.coeffRef(k) = 0;
}
}
m_isInitialized = true;
}
template<typename MatrixType>
@ -246,6 +267,7 @@ bool QR<MatrixType>::solve(
ResultType *result
) const
{
ei_assert(m_isInitialized && "QR is not initialized.");
const int rows = m_qr.rows();
ei_assert(b.rows() == rows);
result->resize(rows, b.cols());
@ -274,6 +296,7 @@ bool QR<MatrixType>::solve(
template<typename MatrixType>
MatrixType QR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "QR is not initialized.");
// compute the product Q_0 Q_1 ... Q_n-1,
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]

View File

@ -61,10 +61,19 @@ template<typename MatrixType> class SVD
public:
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via QR::compute(const MatrixType&).
*/
SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
SVD(const MatrixType& matrix)
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
m_matV(matrix.cols(),matrix.cols()),
m_sigma(std::min(matrix.rows(),matrix.cols()))
m_sigma(std::min(matrix.rows(),matrix.cols())),
m_isInitialized(false)
{
compute(matrix);
}
@ -72,9 +81,23 @@ template<typename MatrixType> class SVD
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
const MatrixUType& matrixU() const { return m_matU; }
const SingularValuesType& singularValues() const { return m_sigma; }
const MatrixVType& matrixV() const { return m_matV; }
const MatrixUType& matrixU() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_matU;
}
const SingularValuesType& singularValues() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_sigma;
}
const MatrixVType& matrixV() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
return m_matV;
}
void compute(const MatrixType& matrix);
SVD& sort();
@ -95,6 +118,7 @@ template<typename MatrixType> class SVD
MatrixVType m_matV;
/** \internal */
SingularValuesType m_sigma;
bool m_isInitialized;
};
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
@ -473,11 +497,15 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
break;
} // end big switch
} // end iterations
m_isInitialized = true;
}
template<typename MatrixType>
SVD<MatrixType>& SVD<MatrixType>::sort()
{
ei_assert(m_isInitialized && "SVD is not initialized.");
int mu = m_matU.rows();
int mv = m_matV.rows();
int n = m_matU.cols();
@ -521,6 +549,8 @@ template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
const int rows = m_matU.rows();
ei_assert(b.rows() == rows);
@ -556,6 +586,7 @@ template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
PositiveType *positive) const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
@ -574,6 +605,7 @@ template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
PositiveType *unitary) const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
@ -592,6 +624,7 @@ template<typename MatrixType>
template<typename RotationType, typename ScalingType>
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
@ -618,6 +651,7 @@ template<typename MatrixType>
template<typename ScalingType, typename RotationType>
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);

View File

@ -121,6 +121,22 @@ template<typename MatrixType> void qr_invertible()
VERIFY(lu.solve(m3, &m2));
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
QR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.isFullRank())
VERIFY_RAISES_ASSERT(qr.rank())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.matrixR())
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
VERIFY_RAISES_ASSERT(qr.matrixQ())
}
void test_qr()
{
for(int i = 0; i < 1; i++) {
@ -144,4 +160,11 @@ void test_qr()
// CALL_SUBTEST( qr_invertible<MatrixXcf>() );
// CALL_SUBTEST( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST(qr_verify_assert<Matrix3f>());
CALL_SUBTEST(qr_verify_assert<Matrix3d>());
CALL_SUBTEST(qr_verify_assert<MatrixXf>());
CALL_SUBTEST(qr_verify_assert<MatrixXd>());
CALL_SUBTEST(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST(qr_verify_assert<MatrixXcd>());
}

View File

@ -24,6 +24,7 @@
#include "main.h"
#include <Eigen/SVD>
#include <Eigen/LU>
template<typename MatrixType> void svd(const MatrixType& m)
{
@ -85,6 +86,22 @@ template<typename MatrixType> void svd(const MatrixType& m)
}
}
template<typename MatrixType> void svd_verify_assert()
{
MatrixType tmp;
SVD<MatrixType> svd;
VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp))
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.sort())
VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp))
VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp))
VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp))
VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))
}
void test_svd()
{
for(int i = 0; i < g_repeat; i++) {
@ -96,4 +113,9 @@ void test_svd()
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
}
CALL_SUBTEST( svd_verify_assert<Matrix3f>() );
CALL_SUBTEST( svd_verify_assert<Matrix3d>() );
CALL_SUBTEST( svd_verify_assert<MatrixXf>() );
CALL_SUBTEST( svd_verify_assert<MatrixXd>() );
}